Attachment A

Flow Frequency Analysis Memo

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Regional Office 4949-A Cox Road Glen Allen, Virginia 23060

SUBJECT: Flow Frequency Determination / 303(d) Status

James River Genco, LLC - VA0073300

TO: Drew Hammond, P.E.

FROM: Jennifer Palmore, P.G.

DATE: May 7, 2012

COPIES: File

The James River Genco cogeneration facility discharges to Gravelly Run in Hopewell, VA. The outfall is located at rivermile 2-GRV000.88. Stream flow frequencies have been requested for use in developing effluent limitations for the VPDES permit.

The expected natural background flow in Gravelly Run has been calculated. The VDEQ conducted flow measurements on Bailey Creek from 1929 through 1998. The measurements were made upstream of the confluence with Cattail Creek at the Route 156 bridge in Hopewell, VA and were correlated with the same day daily mean values from the continuous record gage on Deep Creek near Mannboro (#02041000). The measurements and daily mean values were plotted on a logarithmic graph and a best-fit power trendline was drawn through the data points. The regression trend line equation was then used to calculate the Bailey Creek flow frequencies from the reference gage flow frequencies. The flows for Gravelly Run were calculated using drainage area proportion between the measuring site on Bailey Creek and the discharge point. The data for the reference gage, the measurement site, and the discharge point are presented below.

Deep Creek near Mannboro, VA (#02041000):

Drainage area: 158 mi²
Statistical period: 1947-2003
High flow months: December -April

1Q30 = 0.21 cfs High Flow 1Q10 = 25 cfs 1Q10 = 0.80 cfs High Flow 7Q10 = 29 cfs 7Q10 = 1.0 cfs High Flow 30Q10 = 46 cfs30Q10 = 2.8 cfs HM = undetermined

30Q5 = 5.3 cfs

Bailey Creek at Route 156, Hopewell, VA (#02042080):

Drainage Area: 13.8 mi²

1Q30 = 0.77 cfs High Flow 1Q10 = 4.9 cfs 1Q10 = 1.3 cfs High Flow 7Q10 = 5.2 cfs 7Q10 = 1.4 cfs High Flow 30Q10 = 6.2 cfs 30Q10 = 2.1 cfs HM = undetermined

30Q5 = 2.7 cfs

Gravelly Run at discharge

Drainage area: 0.48 mi²

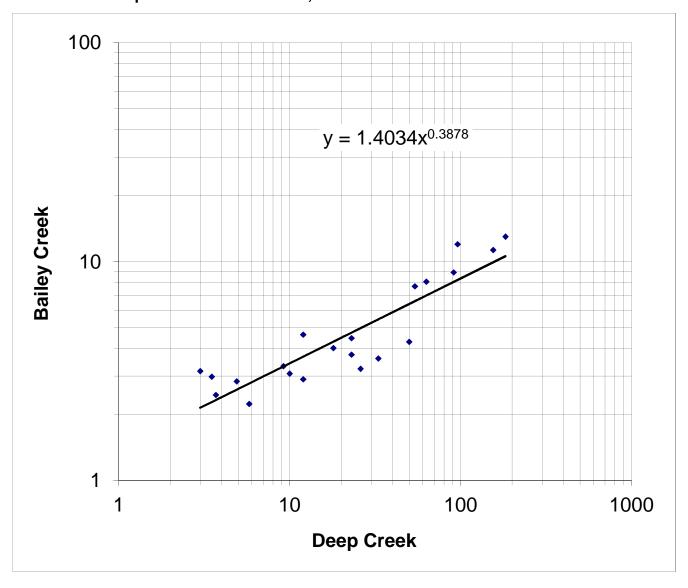
 $\begin{array}{ll} 1 \text{Q30} = 0.027 \text{ cfs } (0.017 \text{ MGD}) \\ 1 \text{Q10} = 0.045 \text{ cfs } (0.029 \text{ MGD}) \\ 7 \text{Q10} = 0.049 \text{ cfs } (0.032 \text{ MGD}) \\ \end{array} \quad \begin{array}{ll} \text{High Flow } 1 \text{Q10} = 0.17 \text{ cfs } (0.11 \text{ MGD}) \\ \text{High Flow } 7 \text{Q10} = 0.18 \text{ cfs } (0.12 \text{ MGD}) \\ \text{High Flow } 30 \text{Q10} = 0.22 \text{ cfs } (0.14 \text{ MGD}) \\ \end{array}$

30Q10 = 0.073 cfs (0.047 MGD) HM = undetermined

30Q5 = 0.093 cfs (0.060 MGD)

However, Gravelly Run consists almost entirely of effluent, with the majority coming from Honeywell, Inc. - Hopewell (VA0005291). Gravelly Run serves as an allocated impact zone for the Honeywell discharge and the effluent limits for the Honeywell permit are based on dilution ratios which will protect instream water quality in the James River.

The Honeywell-Hopewell discharge flow has been requested. Based on DMR data from January 2000 – March 2012, the minimum combined 30-day average flow from Honeywell's outfalls 001 and 002 is 63.89 MGD.


Gravelly Run should be considered a Tier 1 water.

During the 2010 305(b)/303(d) Water Quality Assessment, nontidal Gravelly Run was considered a Category 2B water ("Waters are of concern to the state but no Water Quality Standard exists for a specific pollutant, or the water exceeds a state screening value or toxicity test.") The Fish Consumption Use is considered fully supporting with observed effects due to the VDH fish consumption advisory for kepone. The Aquatic Life Use is fully supporting. The Wildlife and Recreation Uses were not assessed.

The bacterial TMDL for the James River (Hopewell to Westover) was approved by the EPA on 7/10/2008 and by the SWCB on 4/28/2009. The facility was addressed in the TMDL modeling. However, as the facility is not permitted for fecal coliform control, it was determined that they do not require a wasteload allocation.

The Chesapeake Bay TMDL was approved by the EPA on 12/29/2010. The TMDL allocates loads for total nitrogen, total phosphorus, and total suspended solids to protect the dissolved oxygen and submerged aquatic vegetation criteria in the Chesapeake Bay and its tidal tributaries. James River Genco was included in the aggregated loads for non-significant wastewater dischargers in the lower James River Tidal Freshwater segment (JMSTF1). The nutrient allocations are administered through the Watershed Nutrient General Permit; the TSS allocations are considered aggregated and facilities with technology-based TSS limits are considered to be in conformance with the TMDL.

If you have any questions concerning this analysis or need additional information, please let me know.

Flow Data (cis)				
<u>Date</u>	Deep	Bailey		
4/1/1929	=	21.0		
10/4/1977	12	2.9		
1/12/1978	183	13		
10/2/1991	12	4.64		
11/14/1991	50	4.30		
0/0/4000	4.0	4.00		

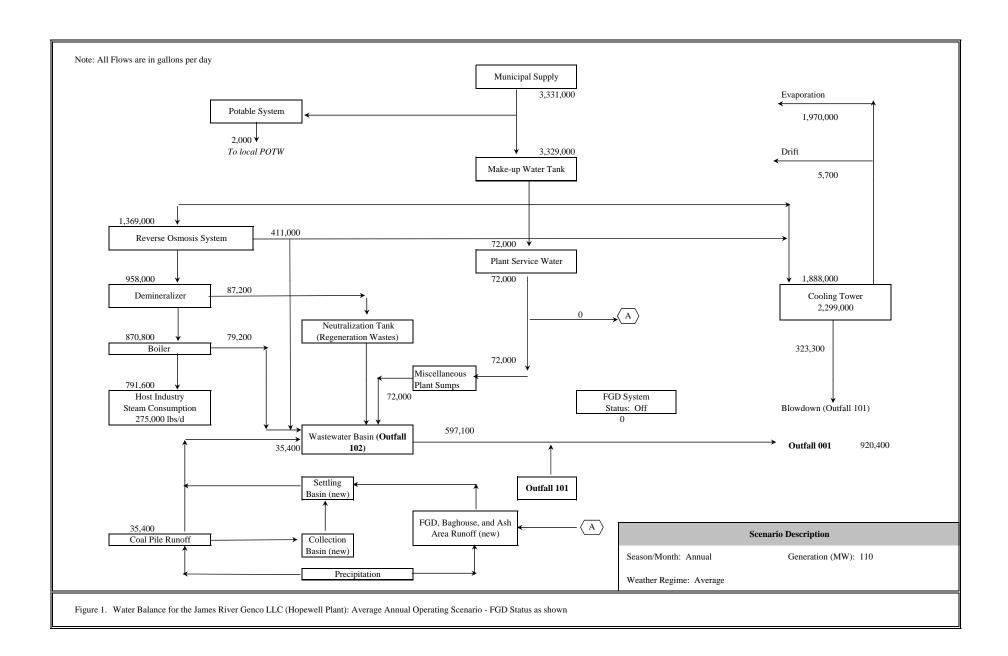
10/4/1977	12	2.9
1/12/1978	183	13
10/2/1991	12	4.64
11/14/1991	50	4.30
9/2/1992	18	4.03
7/28/1993	9.2	3.33
9/20/1993	3.5	2.98
3/17/1994	155	11.3
7/8/1994	26	3.24
9/21/1994	10	3.08
2/27/1995	63	8.10
4/18/1995	54	7.71
8/15/1995	33	3.61
9/12/1995	5.8	2.24
4/25/1996	91	8.93
6/24/1996	23	3.76
5/12/1997	96	12.0
6/26/1997	23	4.47
10/9/1997	4.9	2.84
8/24/1998	3.0	3.16
9/28/1998	3.7	2.46

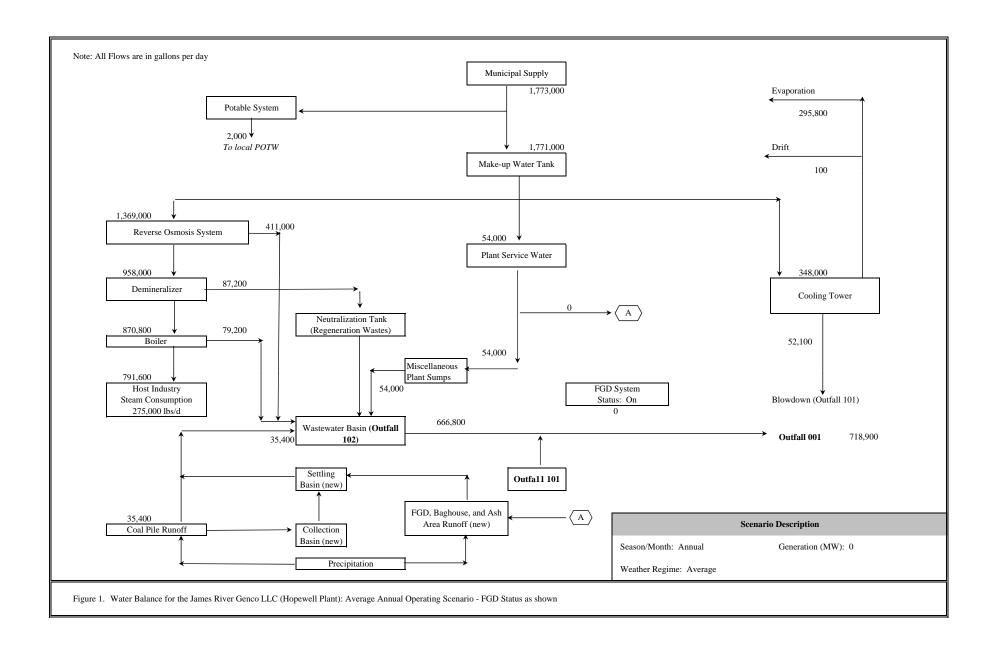
Regression Statis	stics
Multiple R	0.940
R Square	0.884
Adjusted R Square	0.878
Standard Error	1.178
Observations	21

	Flow Frequencies (cfs)				
	<u>Deep</u>	<u>Bailey</u>	Gravelly		
1Q30	0.21	0.77	0.027		
1Q10	0.80	1.3	0.045		
7Q10	1.0	1.4	0.049		
30Q10	2.8	2.1	0.073		
30Q5	5.3	2.7	0.093		
HF1Q10	25	4.9	0.17		
HF7Q10	29	5.2	0.18		
HF30Q10	46	6.2	0.22		
HM	-	-	-		
DA	158	13.8	0.48		
	Dec-Apr 1947-2003				

Facility Name:Honeywell International Incorporated - Hopewell Permit No:VA0005291

Permit No:VA000 Outfall Number	Parameter Code	Due Date	Quant Avg	Outfall Numb Paramete	r Due Date	Quant Avg
001	001	10-Feb-00	70.06		10-Feb-00	31.98
		10-Mar-00			10-Mar-00	
		10-Apr-00			10-Apr-00	
		10-May-00			10-May-00	
		10-Jun-00			10-Jun-00	
		10-Jul-00			10-Jul-00	
		10-Aug-00			10-Aug-00	
		10-Sep-00			10-Sep-00	
		10-Oct-00			10-Oct-00	
		10-Nov-00			10-Nov-00	
		10-Dec-00			10-Dec-00	
		10-Jan-01	71.64		10-Jan-01	32.74
		10-Feb-01	68.9		10-Feb-01	31.82
		10-Mar-01	64.99		10-Mar-01	34.43
		10-Apr-01	70.63		10-Apr-01	38.81
		10-May-01	74.48		10-May-01	38.38
		10-Jun-01	78.37		10-Jun-01	40.17
		10-Jul-01	84.47		10-Jul-01	39.47
		10-Aug-01	84.13		10-Aug-01	38.5
		10-Sep-01	74.28		10-Sep-01	48.43
		10-Oct-01	77.63		10-Oct-01	48.15
		10-Nov-01	74.82		10-Nov-01	43.7
		10-Dec-01	75.68		10-Dec-01	34.54
		10-Jan-02	75.16		10-Jan-02	32.88
		10-Feb-02	71.72		10-Feb-02	29.67
		10-Mar-02	75.99		10-Mar-02	32.68
		10-Apr-02	71.04		10-Apr-02	33.13
		10-May-02	75.08		10-May-02	37.89
		10-Jun-02	75.22		10-Jun-02	45.53
		10-Jul-02	83.81		10-Jul-02	40.87
		10-Aug-02			10-Aug-02	45.42
		10-Sep-02	83.55		10-Sep-02	50.07
		10-Oct-02			10-Oct-02	
		10-Nov-02			10-Nov-02	
		10-Dec-02			10-Dec-02	41.47
		10-Jan-03			10-Jan-03	
		10-Feb-03			10-Feb-03	
		10-Mar-03			10-Mar-03	
		10-Apr-03			10-Apr-03	
		10-May-03			10-May-03	
		10-Jun-03			10-Jun-03	
		10-Jul-03			10-Jul-03	
		10-Aug-03	78		10-Aug-03	
		10-Sep-03	83.25		10-Sep-03	
		10-Oct-03			10-Oct-03	
		10-Nov-03	72.61		10-Nov-03	
		10-Dec-03	71.99		10-Dec-03	
		10-Jan-04	69.65		10-Jan-04	
		10-Feb-04	64.31		10-Feb-04	
		10-Mar-04			10-Mar-04	
		10-Apr-04			10-Apr-04	
		10-May-04	68.85		10-May-04	37.14

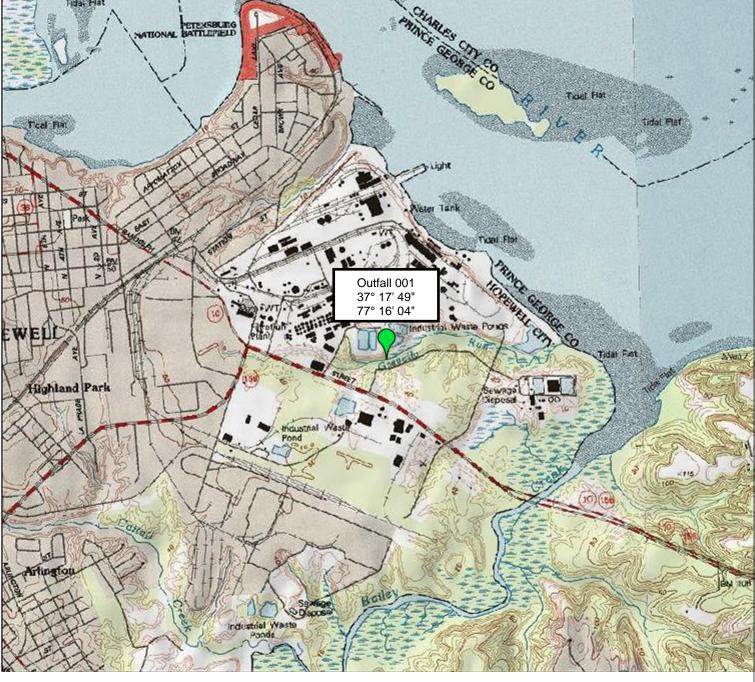

Permit No:VA000	5291	·			
Outfall Number	Parameter Code	Due Date	Quant Avg	Outfall Numb Parameter Due Date	Quant Avg
		10-Jun-04	80.72	10-Jun-04	44.39
		10-Jul-04	79.86	10-Jul-04	46.39
		10-Aug-04	80.02	10-Aug-04	48.51
		10-Sep-04	81.54	10-Sep-04	47.74
		10-Oct-04	79.88	10-Oct-04	44.41
		10-Nov-04	77.88	10-Nov-04	44.96
		10-Dec-04	72.78	10-Dec-04	42.13
		10-Jan-05	67.72	10-Jan-05	37.01
		10-Feb-05	65.05	10-Feb-05	35.42
		10-Mar-05	63.96	10-Mar-05	39.29
		10-Apr-05		•	
		10-May-05		•	
		10-Jun-05			
		10-Jul-05			
		10-Aug-05		ı	
		10-Sep-05		·	
		10-Oct-05			
		10-Nov-05		10-Nov-05	
		10-Dec-05			
		10-Jan-06		10-Jan-06	
		10-Feb-06			
		10-Mar-06		10-Mar-06	
		10-Apr-06		10-Apr-06	
		10-May-06		10-May-06	
		10-Jun-06		10-Jun-06	
		10-Jul-06		10-Jul-06	
		10-Aug-06 10-Sep-06		10-Aug-06 10-Sep-06	
		10-Sep-00 10-Oct-06		•	
		10-Nov-06			
		10-Dec-06		10-Dec-06	
		10-Jan-07			
		10-Feb-07		10-Feb-07	
		10-Mar-07			
		10-Apr-07		10-Apr-07	
		10-May-07			
		10-Jun-07			
		10-Jul-07	69.94	10-Jul-07	
		10-Aug-07	67.26	10-Aug-07	51.58
		10-Sep-07	65.22	10-Sep-07	43.02
		10-Oct-07		10-Oct-07	43.8
		10-Nov-07			45.44
		10-Dec-07			
		10-Jan-08			
		10-Feb-08		10-Feb-08	
		10-Mar-08		10-Mar-08	
		10-Apr-08		10-Apr-08	
		10-May-08		10-May-08	
		10-Jun-08			
		10-Jul-08		10-Jul-08	
		10-Aug-08		· ·	
		10-Sep-08	71.1	10-Sep-08	47.4


Permit No:VA0005291		
Outfall Number	Parameter Code	

10-Oct-08 67.17 10-Nov-08 46.33 10-Nov-08 59.7 10-Nov-08 45.64 10-Dec-08 56.29 10-Dec-08 37.7 10-Jan-09 48.45 10-Jan-09 28.75 10-Feb-09 39.7 10-Feb-09 24.19 10-Mar-09 45.93 10-Mar-09 30.39 10-Apr-09 49.92 10-Apr-09 35.72 10-May-09 55.81 10-May-09 37.52 10-Jun-09 54.41 10-Jun-09 34.22 10-Aug-09 64.13 10-Aug-09 39.1 10-Sep-09 66.59 10-Sep-09 42.16 10-Oct-09 65.44 10-Oct-09 42.94 10-Nov-09 58.27 10-Nov-09 35.42 10-Be-09 52.22 10-Dec-09 28.07 10-Jan-10 47.78 10-Jan-10 29.15 10-Feb-10 49.25 10-Feb-10 32.42 10-Mar-10 52.63 10-Mar-10 29.11 10-Ju	Due Date	Quant Avg	Outfall Numb Parameter	Due Date	Quant Avg
10-Dec-08 56.29 10-Jan-09 48.45 10-Jan-09 28.75 10-Feb-09 39.7 10-Mar-09 45.93 10-Mpr-09 49.92 10-Mpr-09 55.81 10-Jun-09 55.81 10-Jun-09 58.7 10-Jun-09 64.13 10-Sep-09 64.13 10-Sep-09 66.59 10-Nov-09 58.27 10-Nov-09 58.27 10-Dec-09 52.22 10-Dec-09 52.22 10-Dec-09 52.22 10-Mar-10 49.25 10-Feb-10 49.25 10-Mar-10 52.63 10-May-10 52.63 10-Jun-10 63.05 10-Jul-10 67.43 10-Jul-10 63.05 10-Sep-10 71.47 10-Dec-10 62.55 10-Sep-10 71.47 10-Dec-10 62.55 10-Nov-10 62.55 10-Dec-10 <	10-Oct-08	67.17		10-Oct-08	46.33
10-Jan-09 48.45 10-Jan-09 28.75 10-Feb-09 39.7 10-Feb-09 24.19 10-Mar-09 45.93 10-Mar-09 30.39 10-Apr-09 45.93 10-Mar-09 35.72 10-May-09 55.81 10-May-09 37.52 10-Jun-09 58.7 10-Jun-09 40.37 10-Jul-09 54.41 10-Jul-09 34.42 10-Aug-09 64.13 10-Aug-09 39.1 10-Sep-09 66.59 10-Sep-09 42.16 10-Oct-09 65.44 10-Oct-09 42.94 10-Nov-09 58.27 10-Nov-09 35.42 10-Dec-09 52.22 10-Dec-09 28.07 10-Jan-10 47.78 10-Jan-10 29.05 10-Feb-10 49.25 10-Feb-10 32.42 10-Mar-10 52.63 10-Mar-10 29.11 10-Apr-10 63.05 10-Mar-10 29.11 10-Aug-10 67.43 10-Jul-10 51.48 10-	10-Nov-08	59.7		10-Nov-08	45.64
10-Feb-09 39.7 10-Feb-09 24.19 10-Mar-09 45.93 10-Mar-09 30.39 10-Apr-09 49.92 10-Apr-09 35.72 10-Jun-09 58.7 10-Jun-09 40.37 10-Jul-09 54.41 10-Jul-09 34.42 10-Aug-09 64.13 10-Aug-09 39.1 10-Sep-09 66.59 10-Sep-09 42.16 10-Nov-09 58.27 10-Nov-09 35.42 10-Dec-09 52.22 10-Dec-09 28.07 10-Jan-10 47.78 10-Jan-10 29.05 10-Feb-10 49.25 10-Feb-10 32.42 10-Mar-10 45.36 10-Mar-10 36.89 10-Mar-10 45.36 10-Mar-10 36.89 10-May-10 51.24 10-Mar-10 36.81 10-Jun-10 63.05 10-Jun-10 46.59 10-Jul-10 67.43 10-Jul-10 51.24 10-Sep-10 71.47 10-Sep-10 51.21 10-	10-Dec-08	56.29		10-Dec-08	37.7
10-Mar-09 45.93 10-Apr-09 49.92 10-May-09 55.81 10-Jun-09 58.7 10-Jun-09 58.7 10-Jul-09 54.41 10-Aug-09 64.13 10-Sep-09 66.59 10-Oct-09 65.44 10-Nov-09 58.27 10-Dec-09 52.22 10-Dec-09 52.22 10-Dec-09 52.22 10-Feb-10 49.25 10-Feb-10 49.25 10-Mar-10 45.36 10-Mar-10 52.63 10-May-10 51.24 10-Jun-10 63.05 10-Jun-10 63.05 10-Jun-10 63.05 10-Jul-10 67.43 10-Aug-10 72.5 10-Nov-10 62.55 10-Nov-10 62.55 10-Nov-10 62.55 10-Nov-10 52.89 10-Dec-10 52.89 10-Dec-10 52.89 10-Mar-11 <t< td=""><td>10-Jan-09</td><td>48.45</td><td></td><td>10-Jan-09</td><td>28.75</td></t<>	10-Jan-09	48.45		10-Jan-09	28.75
10-Apr-09 49.92 10-Apr-09 35.72 10-May-09 55.81 10-May-09 37.52 10-Jun-09 58.7 10-Jun-09 40.37 10-Jul-09 54.41 10-Jul-09 34.42 10-Aug-09 64.13 10-Aug-09 39.1 10-Sep-09 66.59 10-Sep-09 42.16 10-Oct-09 58.27 10-Nov-09 35.42 10-Dec-09 52.22 10-Dec-09 28.07 10-Jan-10 47.78 10-Jan-10 29.05 10-Feb-10 49.25 10-Feb-10 32.42 10-Mar-10 45.36 10-Mar-10 29.05 10-Mar-10 52.63 10-Mar-10 36.89 10-Mar-10 52.63 10-Apr-10 36.89 10-Jun-10 63.05 10-Jun-10 46.59 10-Sep-10 71.47 10-Sep-10 51.24 10-Aug-10 72.5 10-Aug-10 52.89 10-Sep-10 51.24 10-Aug-10 52.89 10-	10-Feb-09	39.7		10-Feb-09	24.19
10-May-09 55.81 10-Jun-09 58.7 10-Jul-09 54.41 10-Aug-09 64.13 10-Sep-09 66.59 10-Cet-09 65.44 10-Nov-09 58.27 10-Dec-09 52.22 10-Dec-09 52.22 10-Jan-10 47.78 10-Feb-10 49.25 10-Mar-10 45.36 10-Mar-10 52.63 10-May-10 51.24 10-Jun-10 63.05 10-Jul-10 67.43 10-Jul-10 67.43 10-Sep-10 71.47 10-Sep-10 71.47 10-Sep-10 51.24 10-Nov-10 62.55 10-Nov-10 62.55 10-Nov-10 62.55 10-Dec-10 52.89 10-Jan-11 45.36 10-Jan-11 46.59 10-Sep-10 71.47 10-Sep-10 51.24 10-Nov-10 63.05 10-Sep-10 51.21 10-Oct-10 69.7 10	10-Mar-09	45.93		10-Mar-09	30.39
10-Jun-09 58.7 10-Jun-09 40.37 10-Jul-09 54.41 10-Jul-09 34.42 10-Aug-09 64.13 10-Aug-09 39.1 10-Sep-09 66.59 10-Sep-09 42.16 10-Nov-09 65.44 10-Oct-09 42.94 10-Nov-09 58.27 10-Nov-09 35.42 10-Dec-09 52.22 10-Dec-09 28.07 10-Jan-10 47.78 10-Jan-10 29.05 10-Jan-10 47.78 10-Jan-10 29.05 10-Feb-10 49.25 10-Feb-10 32.42 10-Mar-10 45.36 10-Mar-10 29.11 10-Apr-10 52.63 10-Apr-10 36.89 10-Jun-10 63.05 10-Jun-10 36.89 10-Jul-10 67.43 10-Jul-10 51.48 10-Aug-10 72.5 10-Aug-10 52.89 10-Sep-10 71.47 10-Sep-10 51.21 10-Oct-10 69.7 10-Nov-10 30.42 10-P	10-Apr-09	49.92		10-Apr-09	35.72
10-Jul-09 54.41 10-Aug-09 64.13 10-Sep-09 66.59 10-Oct-09 65.44 10-Nov-09 58.27 10-Dec-09 52.22 10-Jan-10 47.78 10-Feb-10 49.25 10-Mar-10 45.36 10-Apr-10 52.63 10-May-10 51.24 10-Jun-10 63.05 10-Jul-10 67.43 10-Sep-10 72.5 10-Sep-10 72.5 10-Nov-10 62.55 10-Nov-10 62.55 10-Jan-11 42.27 10-Jan-11 42.27 10-Jan-11 53.82 10-Jan-11 53.82 10-Jun-11 53.82 10	10-May-09	55.81		10-May-09	37.52
10-Aug-09 64.13 10-Sep-09 66.59 10-Oct-09 65.44 10-Nov-09 58.27 10-Dec-09 52.22 10-Jan-10 47.78 10-Jan-10 49.25 10-Mar-10 45.36 10-Mar-10 52.63 10-Jun-10 63.05 10-Jul-10 63.05 10-Jul-10 67.43 10-Noy-10 52.89 10-Sep-10 71.47 10-Oct-10 69.7 10-Nov-10 62.55 10-Nov-10 52.89 10-Jan-11 45.06 10-Jan-11 33.84 10-Feb-11 52.79 10-Mar-11 33.84 10-Jo-pe-10 52.89 10-Jun-11 45.06 10-Jun-11 45.06 10-Jun-11 59.71 10-May-11 48.47 10-Jun-11 59.71 10-Jun-11 40.65 10-Aug-11 70 10-Aug-11 70 10-Aug-11 40.65 10-Au	10-Jun-09	58.7		10-Jun-09	40.37
10-Sep-09 66.59 10-Oct-09 65.44 10-Nov-09 58.27 10-Dec-09 52.22 10-Dec-09 52.22 10-Jan-10 47.78 10-Feb-10 49.25 10-Mar-10 45.36 10-Mar-10 52.63 10-May-10 51.24 10-Jun-10 63.05 10-Jul-10 67.43 10-Aug-10 52.89 10-Sep-10 71.47 10-Oct-10 69.7 10-Nov-10 62.55 10-Nov-10 52.89 10-Dec-10 52.89 10-Peb-11 52.79 10-Mar-11 53.82 10-Apr-11 45.06 10-Apr-11 45.06 10-Jun-11 46.65 10-Jun-11 59.71 10-Jun-11 59.71 10-Jun-11 45.06 10-Apr-11 45.06 10-Jun-11 46.65 10-Jun-11 46.65 10-Jul-11 66.65 10-Jul-11 46.65 1	10-Jul-09	54.41		10-Jul-09	34.42
10-Oct-09 65.44 10-Nov-09 58.27 10-Dec-09 52.22 10-Jan-10 47.78 10-Feb-10 49.25 10-Mar-10 45.36 10-Mar-10 52.63 10-May-10 52.63 10-Jun-10 63.05 10-Jul-10 67.43 10-Aug-10 72.5 10-Sep-10 71.47 10-Dec-10 69.7 10-Nov-10 62.55 10-Nov-10 62.55 10-Jan-11 42.27 10-Jan-11 42.27 10-Jan-11 43.84 10-Feb-11 52.79 10-Mar-11 53.82 10-Apr-11 45.06 10-Apr-11 45.06 10-Jun-11 59.71 10-Jun-11 45.06 10-Apr-11 45.06 10-Apr-11 45.06 10-Apr-11 45.06 10-Jun-11 59.71 10-Jun-11 66.65 10-Jul-11 <	10-Aug-09	64.13		10-Aug-09	39.1
10-Nov-09 58.27 10-Dec-09 52.22 10-Jan-10 47.78 10-Feb-10 49.25 10-Mar-10 49.25 10-Mar-10 49.25 10-Mar-10 45.36 10-Mar-10 52.63 10-May-10 51.24 10-Jun-10 63.05 10-Jul-10 67.43 10-Jul-10 67.43 10-Aug-10 72.5 10-Sep-10 71.47 10-Oct-10 69.7 10-Nov-10 62.55 10-Nov-10 62.55 10-Jan-11 42.27 10-Jan-11 51.24 10-Dec-10 52.89 10-Dec-10 36.42 10-Jan-11 42.27 10-Jan-11 33.84 10-Feb-11 52.79 10-Apr-11 45.06 10-Apr-11 45.06 10-Jun-11 49.29 10-Jun-11 59.71 10-Jun-11 44.22 10-Jun-11 66.65 10-Jun-11 66.65 10	10-Sep-09	66.59		10-Sep-09	42.16
10-Dec-09 52.22 10-Dec-09 28.07 10-Jan-10 47.78 10-Jan-10 29.05 10-Feb-10 49.25 10-Feb-10 32.42 10-Mar-10 45.36 10-Mar-10 29.11 10-Apr-10 52.63 10-Mar-10 36.89 10-May-10 51.24 10-May-10 38.61 10-Jun-10 63.05 10-Jun-10 46.59 10-Jul-10 67.43 10-Jun-10 51.48 10-Aug-10 72.5 10-Aug-10 52.89 10-Sep-10 71.47 10-Sep-10 51.21 10-Oct-10 69.7 10-Oct-10 50.89 10-Nov-10 62.55 10-Nov-10 39.14 10-Dec-10 52.89 10-Dec-10 36.42 10-Jan-11 42.27 10-Jan-11 33.84 10-Feb-11 52.79 10-Feb-11 34.07 10-May-11 45.06 10-Apr-11 31.13 10-Jun-11 59.71 10-Jun-11 44.22 10	10-Oct-09	65.44		10-Oct-09	42.94
10-Jan-10 47.78 10-Feb-10 49.25 10-Mar-10 49.25 10-Mar-10 45.36 10-Apr-10 52.63 10-May-10 51.24 10-Jun-10 63.05 10-Jul-10 67.43 10-Aug-10 72.5 10-Sep-10 71.47 10-Oct-10 69.7 10-Nov-10 62.55 10-Jan-11 42.27 10-Feb-11 52.89 10-Apr-11 42.27 10-Mar-11 53.82 10-Apr-11 45.06 10-May-11 48.47 10-Jul-11 66.65 10-Aug-11 70 10-Sep-11 71.21 10-Sep-11 71.21 10-Sep-11 71.21 10-Sep-11 70 10-Jul-11 66.65 10-Aug-11 70 10-Sep-11 71.21 10-Sep-11 71.21 10-Sep-11 70.21 10-Nov-11 65.69 10-Nov-11 65.69 10-Nov-11 </td <td>10-Nov-09</td> <td>58.27</td> <td></td> <td>10-Nov-09</td> <td>35.42</td>	10-Nov-09	58.27		10-Nov-09	35.42
10-Jan-10 47.78 10-Feb-10 49.25 10-Mar-10 49.25 10-Mar-10 45.36 10-Apr-10 52.63 10-May-10 51.24 10-Jun-10 63.05 10-Jul-10 67.43 10-Aug-10 72.5 10-Sep-10 71.47 10-Oct-10 69.7 10-Nov-10 62.55 10-Jan-11 42.27 10-Feb-11 52.89 10-Apr-11 45.06 10-Apr-11 45.06 10-May-11 59.71 10-Jul-11 66.65 10-Aug-11 70 10-Sep-11 71.21 10-Sep-11 71.21 10-Sep-11 71.21 10-May-11 49.28 10-Jul-11 66.65 10-Jul-11 67.32 10-Nov-11 65.69 10-Nov-11 67.32 10-Nov-11 61.14 10-Jan-12 38.89 10-Feb-12 38.98 10-Feb-12 37.98 10-Fe	10-Dec-09	52.22		10-Dec-09	28.07
10-Mar-10 45.36 10-Mar-10 29.11 10-Apr-10 52.63 10-Apr-10 36.89 10-Jun-10 63.05 10-Jun-10 46.59 10-Jul-10 67.43 10-Jul-10 51.48 10-Aug-10 72.5 10-Aug-10 52.89 10-Sep-10 71.47 10-Sep-10 51.21 10-Oct-10 69.7 10-Oct-10 50.89 10-Nov-10 62.55 10-Nov-10 39.14 10-Dec-10 52.89 10-Dec-10 36.42 10-Jan-11 42.27 10-Jan-11 33.84 10-Feb-11 52.79 10-Feb-11 34.07 10-Mar-11 53.82 10-Mar-11 35.29 10-Apr-11 45.06 10-Apr-11 31.13 10-May-11 48.47 10-May-11 34.99 10-Jul-11 59.71 10-Jul-11 44.65 10-Aug-11 70 10-Aug-11 44.28 10-Sep-11 71.21 10-Sep-11 43.56 10-Nov-11 65.69 10-Oct-11 44.22 10-Dec-11 <		47.78		10-Jan-10	29.05
10-Apr-10 52.63 10-Apr-10 36.89 10-May-10 51.24 10-May-10 38.61 10-Jun-10 63.05 10-Jun-10 46.59 10-Jul-10 67.43 10-Jul-10 51.48 10-Aug-10 72.5 10-Aug-10 52.89 10-Sep-10 71.47 10-Sep-10 51.21 10-Oct-10 69.7 10-Oct-10 50.89 10-Nov-10 62.55 10-Nov-10 39.14 10-Dec-10 52.89 10-Dec-10 36.42 10-Jan-11 42.27 10-Jan-11 33.84 10-Feb-11 52.79 10-Feb-11 34.07 10-Mar-11 53.82 10-Mar-11 35.29 10-Apr-11 45.06 10-Apr-11 31.13 10-May-11 48.47 10-May-11 34.99 10-Jun-11 59.71 10-Jun-11 44.22 10-Aug-11 70 10-Aug-11 44.28 10-Sep-11 71.21 10-Sep-11 43.56 10-Nov-11 65.69 10-Oct-11 44.22 10-Nov-11 <		49.25		10-Feb-10	32.42
10-Apr-10 52.63 10-Apr-10 36.89 10-May-10 51.24 10-May-10 38.61 10-Jun-10 63.05 10-Jun-10 46.59 10-Jul-10 67.43 10-Jul-10 51.48 10-Aug-10 72.5 10-Aug-10 52.89 10-Sep-10 71.47 10-Sep-10 51.21 10-Oct-10 69.7 10-Oct-10 50.89 10-Nov-10 62.55 10-Nov-10 39.14 10-Dec-10 52.89 10-Dec-10 36.42 10-Jan-11 42.27 10-Jan-11 33.84 10-Feb-11 52.79 10-Feb-11 34.07 10-Mar-11 53.82 10-Mar-11 35.29 10-Apr-11 45.06 10-Apr-11 31.13 10-May-11 48.47 10-May-11 34.99 10-Jun-11 59.71 10-Jun-11 44.22 10-Aug-11 70 10-Aug-11 44.28 10-Sep-11 71.21 10-Sep-11 43.56 10-Nov-11 65.69 10-Oct-11 44.22 10-Nov-11 <	10-Mar-10	45.36		10-Mar-10	29.11
10-May-10 51.24 10-May-10 38.61 10-Jun-10 63.05 10-Jun-10 46.59 10-Jul-10 67.43 10-Jul-10 51.48 10-Aug-10 72.5 10-Aug-10 52.89 10-Sep-10 71.47 10-Sep-10 51.21 10-Oct-10 69.7 10-Oct-10 50.89 10-Nov-10 62.55 10-Nov-10 39.14 10-Dec-10 52.89 10-Dec-10 36.42 10-Jan-11 42.27 10-Jan-11 33.84 10-Feb-11 52.79 10-Feb-11 34.07 10-Mar-11 53.82 10-Mar-11 35.29 10-Apr-11 45.06 10-Apr-11 31.13 10-May-11 45.06 10-Apr-11 34.99 10-Jun-11 49.42 10-Jun-11 44.42 10-Jun-11 59.71 10-Jun-11 44.65 10-Aug-11 70 10-Aug-11 44.28 10-Sep-11 71.21 10-Sep-11 43.56 10-Nov-11 66.69 10-Nov-11 40.1 10-Dec-11 <t< td=""><td>10-Apr-10</td><td></td><td></td><td>10-Apr-10</td><td></td></t<>	10-Apr-10			10-Apr-10	
10-Jun-10 63.05 10-Jun-10 46.59 10-Jul-10 67.43 10-Jul-10 51.48 10-Aug-10 72.5 10-Aug-10 52.89 10-Sep-10 71.47 10-Sep-10 51.21 10-Oct-10 69.7 10-Oct-10 50.89 10-Nov-10 62.55 10-Nov-10 39.14 10-Dec-10 52.89 10-Dec-10 36.42 10-Jan-11 42.27 10-Jan-11 33.84 10-Feb-11 52.79 10-Feb-11 34.07 10-Mar-11 53.82 10-Mar-11 35.29 10-Apr-11 45.06 10-Apr-11 31.13 10-May-11 48.47 10-May-11 34.99 10-Jul-11 59.71 10-Jun-11 44.22 10-Jul-11 66.65 10-Jul-11 44.28 10-Sep-11 71.21 10-Sep-11 43.56 10-Nov-11 65.69 10-Oct-11 44.22 10-Nov-11 67.32 10-Nov-11 40.1 10-Jan-12 56.48 10-Jan-12 38 10-Feb-12 <t< td=""><td>•</td><td></td><td></td><td>•</td><td></td></t<>	•			•	
10-Jul-10 67.43 10-Aug-10 72.5 10-Sep-10 71.47 10-Oct-10 69.7 10-Nov-10 62.55 10-Dec-10 52.89 10-Jan-11 42.27 10-Mar-11 53.82 10-Apr-11 45.06 10-Jun-11 59.71 10-Jul-11 44.42 10-Jul-11 66.65 10-Aug-11 70 10-Sep-11 71.21 10-Oct-11 65.69 10-Nov-11 67.32 10-Dec-11 61.14 10-Jan-12 56.48 10-Feb-12 38.76 10-Apr-12 61.21	•			-	
10-Aug-10 72.5 10-Sep-10 71.47 10-Oct-10 69.7 10-Nov-10 62.55 10-Dec-10 52.89 10-Jan-11 42.27 10-Feb-11 52.79 10-Apr-11 45.06 10-Jun-11 59.71 10-Jun-11 59.71 10-Jul-11 66.65 10-Aug-11 70 10-Sep-11 71.21 10-Oct-11 65.69 10-Nov-11 67.32 10-Dec-11 61.14 10-Jan-12 56.48 10-Feb-12 38.76 10-Apr-12 61.21				10-Jul-10	
10-Sep-10 71.47 10-Sep-10 51.21 10-Oct-10 69.7 10-Oct-10 50.89 10-Nov-10 62.55 10-Nov-10 39.14 10-Dec-10 52.89 10-Dec-10 36.42 10-Jan-11 42.27 10-Jan-11 33.84 10-Feb-11 52.79 10-Feb-11 34.07 10-Mar-11 53.82 10-Mar-11 35.29 10-Apr-11 45.06 10-Apr-11 31.13 10-May-11 48.47 10-May-11 34.99 10-Jun-11 59.71 10-Jun-11 44.42 10-Jul-11 66.65 10-Jul-11 44.65 10-Aug-11 70 10-Aug-11 44.28 10-Sep-11 71.21 10-Sep-11 43.56 10-Nov-11 65.69 10-Oct-11 44.22 10-Nov-11 67.32 10-Nov-11 40.1 10-Dec-11 61.44 10-Dec-11 39.89 10-Feb-12 58.18 10-Feb-12 37.98 10-Mar-12 57.18 10-Mar-12 38.76 10-Apr-12 <					
10-Oct-10 69.7 10-Nov-10 62.55 10-Dec-10 52.89 10-Jan-11 42.27 10-Feb-11 52.79 10-Mar-11 53.82 10-Apr-11 45.06 10-May-11 48.47 10-Jun-11 59.71 10-Jul-11 66.65 10-Aug-11 44.42 10-Sep-11 71.21 10-Oct-11 65.69 10-Nov-11 67.32 10-Nov-11 61.14 10-Dec-11 61.14 10-Jan-12 56.48 10-Feb-12 58.18 10-Mar-12 57.18 10-Apr-12 42.09	-			-	
10-Nov-10 62.55 10-Nov-10 39.14 10-Dec-10 52.89 10-Dec-10 36.42 10-Jan-11 42.27 10-Jan-11 33.84 10-Feb-11 52.79 10-Feb-11 34.07 10-Mar-11 53.82 10-Mar-11 35.29 10-Apr-11 45.06 10-Apr-11 31.13 10-May-11 48.47 10-May-11 34.99 10-Jun-11 59.71 10-Jun-11 44.42 10-Jul-11 66.65 10-Jul-11 44.65 10-Aug-11 70 10-Aug-11 44.28 10-Sep-11 71.21 10-Sep-11 43.56 10-Oct-11 65.69 10-Oct-11 44.22 10-Nov-11 67.32 10-Nov-11 40.1 10-Dec-11 61.14 10-Dec-11 39.89 10-Jan-12 56.48 10-Jan-12 38 10-Feb-12 57.18 10-Mar-12 38.76 10-Apr-12 61.21 10-Apr-12 42.09	•			•	
10-Dec-10 52.89 10-Jan-11 42.27 10-Feb-11 52.79 10-Mar-11 53.82 10-Apr-11 45.06 10-May-11 45.06 10-May-11 34.99 10-Jun-11 59.71 10-Jul-11 66.65 10-Aug-11 70 10-Sep-11 71.21 10-Sep-11 44.28 10-Oct-11 65.69 10-Nov-11 67.32 10-Nov-11 61.14 10-Dec-11 61.14 10-Jan-12 56.48 10-Feb-12 37.98 10-Mar-12 57.18 10-Apr-12 61.21					
10-Jan-11 42.27 10-Feb-11 52.79 10-Mar-11 53.82 10-Apr-11 45.06 10-May-11 48.47 10-Jun-11 59.71 10-Jul-11 66.65 10-Aug-11 70 10-Sep-11 71.21 10-Oct-11 65.69 10-Nov-11 67.32 10-Dec-11 61.14 10-Jan-12 56.48 10-Feb-12 58.18 10-Mar-12 57.18 10-Apr-12 42.09					
10-Feb-11 52.79 10-Feb-11 34.07 10-Mar-11 53.82 10-Mar-11 35.29 10-Apr-11 45.06 10-Apr-11 31.13 10-May-11 48.47 10-May-11 34.99 10-Jun-11 59.71 10-Jun-11 44.42 10-Jul-11 66.65 10-Jul-11 44.65 10-Aug-11 70 10-Aug-11 44.28 10-Sep-11 71.21 10-Sep-11 43.56 10-Oct-11 65.69 10-Oct-11 44.22 10-Nov-11 67.32 10-Nov-11 40.1 10-Dec-11 61.14 10-Dec-11 39.89 10-Jan-12 56.48 10-Jan-12 38 10-Feb-12 58.18 10-Feb-12 37.98 10-Mar-12 57.18 10-Mar-12 38.76 10-Apr-12 61.21 10-Apr-12 42.09					
10-Mar-11 53.82 10-Mar-11 35.29 10-Apr-11 45.06 10-Apr-11 31.13 10-May-11 48.47 10-May-11 34.99 10-Jun-11 59.71 10-Jun-11 44.42 10-Jul-11 66.65 10-Jul-11 44.65 10-Aug-11 70 10-Aug-11 44.28 10-Sep-11 71.21 10-Sep-11 43.56 10-Oct-11 65.69 10-Oct-11 44.22 10-Nov-11 67.32 10-Nov-11 40.1 10-Dec-11 61.14 10-Dec-11 39.89 10-Jan-12 56.48 10-Jan-12 38 10-Feb-12 58.18 10-Feb-12 37.98 10-Mar-12 57.18 10-Mar-12 38.76 10-Apr-12 61.21 10-Apr-12 42.09	10-Feb-11	52.79		10-Feb-11	
10-Apr-11 45.06 10-Apr-11 31.13 10-May-11 48.47 10-May-11 34.99 10-Jun-11 59.71 10-Jun-11 44.42 10-Jul-11 66.65 10-Jul-11 44.65 10-Aug-11 70 10-Aug-11 44.28 10-Sep-11 71.21 10-Sep-11 43.56 10-Oct-11 65.69 10-Oct-11 44.22 10-Nov-11 67.32 10-Nov-11 40.1 10-Dec-11 61.14 10-Dec-11 39.89 10-Jan-12 56.48 10-Jan-12 38 10-Feb-12 58.18 10-Feb-12 37.98 10-Mar-12 57.18 10-Mar-12 38.76 10-Apr-12 61.21 10-Apr-12 42.09					
10-May-11 48.47 10-May-11 34.99 10-Jun-11 59.71 10-Jun-11 44.42 10-Jul-11 66.65 10-Jul-11 44.65 10-Aug-11 70 10-Aug-11 44.28 10-Sep-11 71.21 10-Sep-11 43.56 10-Oct-11 65.69 10-Oct-11 44.22 10-Nov-11 67.32 10-Nov-11 40.1 10-Dec-11 61.14 10-Dec-11 39.89 10-Jan-12 56.48 10-Jan-12 38 10-Feb-12 58.18 10-Feb-12 37.98 10-Mar-12 57.18 10-Mar-12 38.76 10-Apr-12 61.21 10-Apr-12 42.09					
10-Jun-11 59.71 10-Jun-11 44.42 10-Jul-11 66.65 10-Jul-11 44.65 10-Aug-11 70 10-Aug-11 44.28 10-Sep-11 71.21 10-Sep-11 43.56 10-Oct-11 65.69 10-Oct-11 44.22 10-Nov-11 67.32 10-Nov-11 40.1 10-Dec-11 61.14 10-Dec-11 39.89 10-Jan-12 56.48 10-Jan-12 38 10-Feb-12 58.18 10-Feb-12 37.98 10-Mar-12 57.18 10-Mar-12 38.76 10-Apr-12 61.21 10-Apr-12 42.09	•			•	
10-Jul-11 66.65 10-Aug-11 70 10-Sep-11 71.21 10-Oct-11 65.69 10-Nov-11 67.32 10-Dec-11 61.14 10-Jan-12 56.48 10-Feb-12 58.18 10-Mar-12 57.18 10-Apr-12 61.21	•			-	
10-Aug-11 70 10-Sep-11 71.21 10-Oct-11 65.69 10-Nov-11 67.32 10-Dec-11 61.14 10-Jan-12 56.48 10-Feb-12 58.18 10-Mar-12 57.18 10-Apr-12 61.21				10-Jul-11	
10-Sep-11 71.21 10-Sep-11 43.56 10-Oct-11 65.69 10-Oct-11 44.22 10-Nov-11 67.32 10-Nov-11 40.1 10-Dec-11 61.14 10-Dec-11 39.89 10-Jan-12 56.48 10-Jan-12 38 10-Feb-12 58.18 10-Feb-12 37.98 10-Mar-12 57.18 10-Mar-12 38.76 10-Apr-12 61.21 10-Apr-12 42.09	10-Aug-11	70			
10-Oct-11 65.69 10-Oct-11 44.22 10-Nov-11 67.32 10-Nov-11 40.1 10-Dec-11 61.14 10-Dec-11 39.89 10-Jan-12 56.48 10-Jan-12 38 10-Feb-12 58.18 10-Feb-12 37.98 10-Mar-12 57.18 10-Mar-12 38.76 10-Apr-12 61.21 10-Apr-12 42.09	-	71.21		_	43.56
10-Nov-11 67.32 10-Nov-11 40.1 10-Dec-11 61.14 10-Dec-11 39.89 10-Jan-12 56.48 10-Jan-12 38 10-Feb-12 58.18 10-Feb-12 37.98 10-Mar-12 57.18 10-Mar-12 38.76 10-Apr-12 61.21 10-Apr-12 42.09					
10-Dec-11 61.14 10-Dec-11 39.89 10-Jan-12 56.48 10-Jan-12 38 10-Feb-12 58.18 10-Feb-12 37.98 10-Mar-12 57.18 10-Mar-12 38.76 10-Apr-12 61.21 10-Apr-12 42.09					
10-Jan-12 56.48 10-Jan-12 38 10-Feb-12 58.18 10-Feb-12 37.98 10-Mar-12 57.18 10-Mar-12 38.76 10-Apr-12 61.21 10-Apr-12 42.09					
10-Feb-12 58.18 10-Feb-12 37.98 10-Mar-12 57.18 10-Mar-12 38.76 10-Apr-12 61.21 10-Apr-12 42.09					
10-Mar-12 57.18 10-Mar-12 38.76 10-Apr-12 61.21 10-Apr-12 42.09					
10-Apr-12 61.21 10-Apr-12 42.09					
·					
	•			•	
Total 63.89				Total	63.89

Attachment B

Facility Flow Diagram



Attachment C

Topographic Map

Map Export

Legend

0 500 1000 1500 2000 Map Scale: 1:24,000

Attachment D

James River Genco, LLC Tankage & Totes

James River Genco, LLC Tankage

	On alliance 11 1 1 1 1 1	<u> </u>
Wastewater	Sodium Hydroxide (550 Gallons)	In containment
Pretreatment	Sulfuric Acid	In containment
	(1000 Gallons)	In containment
Fire Pumphouse	Diesel Fuel	In containment
r ii o r diiipii odoo	(300 Gallons)	iii eenaiiiien
	Sodium Hydroxide	In containment
	(5000 Gallons) Sodium Hydroxide	
	(850 Gallons)	In containment
	Sodium Hydroxide	
	(125 Gallons)	In containment
	Sulfuric Acid	le containment
Demin Bulding	(5000 Gallons)	In containment
Demin Bulding	Sulfuric Acid	In containment
	(500 Gallons)	in containment
	Sulfuric Acid	In containment
	(100 Gallons)	55
	Sulfuric Acid	In containment
	(100 Gallons) Sulfuric Acid	
	(100 Gallons)	In containment
Cooling Tower	Continium ACE	
Chemical Treatment	(2000 Gallons)	In containment
0.101.11001.11001.11	Optisperse	Local La Maria Da Ran Da Rigar
	(100 Gallons)	Inside Main Boiler Building
	Optisperse	Inside Main Boiler Building
	(100 Gallons)	Inside Main Boller Building
11 % 0 5 %	Optisperse	Inside Main Boiler Building
Unit One Boiler	(100 Gallons)	
Chemical Treatment	Cortrol (100 Gallons)	Inside Main Boiler Building
	Cortrol	
	(100 Gallons)	Inside Main Boiler Building
	Steamate	Local La Maria Da Ran Da Ran
	(100 Gallons)	Inside Main Boiler Building
	Optisperse	Inside Main Boiler Building
	(100 Gallons)	maide Main Doller Dulluling
	Optisperse	Inside Main Boiler Building
	(100 Gallons)	
Unit Two Boiler	Optisperse	Inside Main Boiler Building
Chemical Treatment	(100 Gallons) Cortrol	+
Onomical freatment	(100 Gallons)	Inside Main Boiler Building
	Cortrol	
	(100 Gallons)	Inside Main Boiler Building
	Steamate	Incide Main Poiler Puilding
	(100 Gallons)	Inside Main Boiler Building
	Used Oil	Inside Main Boiler Building &
	(250 Gallons)	Secondary Containment
Lube Oil Storage Room	(======;	2222222, 22
Ĭ	Kerosene	Inside Main Boiler Building &
	(100 Gallons)	Secondary Containment
	<u>I</u>	

James River Genco, LLC Tankage (cont.)

	,	
	Diesel Fuel	In Containment
Coal Yard	(500 Gallons)	iii Gontaiiiiieit
Coal Yald	Diesel Fuel	In Containment
	(500 Gallons)	In Containment

James River Genco, LLC Totes

	POLYFLOC AE1703 *	In containment		
	(Plastic Tote)	in containnent		
	Novus CE2654 *	In containment		
Wastewater Pretreatment	(Plastic Tote)	in containnent		
	Novus CE2688 *	In containment		
	(Plastic Tote)	in containnent		
	Klaraid IC1172 *	In containment		
	(Plastic Tote)	in containinent		

^{*} These polymers are not necessarily utilized and/or stored on-site at all times. When they are used, the totes are stored on-site, in containment, in the wastewater basin pretreatment area.

Attachment E

Honeywell-Hopewell Effluent Data Flow Weighted Average Calculations Honeywell - Hopewell VPDES Permit No. VA0005291

Ouftall 001

DMR	Flo)W	pl	Н
Due	Monthly Avg.	Maximum	Minimum	Maximum
Date	MGD	MGD	s.u.	s.u.
3/10/2009	45.93	58.91	6.6	7.9
4/10/2009	49.92	61.9	6.4	7.6
5/10/2009	55.81	65.91	6.5	8.3
6/10/2009	58.7	66.36	6.5	7.9
7/10/2009	54.41	68	6.3	7.4
8/10/2009	64.13	72.96	6.8	8.0
9/10/2009	66.59	72.33	6.7	7.7
10/10/2009	65.44	68.81	6.6	7.5
11/10/2009	58.27	70.5	6.2	7.7
12/10/2009	52.22	68.62	6.2	7.3
1/10/2010	47.78	59.23	6.1	8.3
2/10/2010	49.25	53.26	6.3	8.3
3/10/2010	45.36	49.53	4.7	8.6
4/10/2010	52.63	63.08	6.2	8.7
5/10/2010	51.24	59.03	6.2	8.7
6/10/2010	63.05	69.47	6.5	7.8
7/10/2010	67.43	81.16	6.4	8.7
8/10/2010	72.5	79.23	6.4	7.6
9/10/2010	71.47	82.95	6.8	8.0
10/10/2010	69.7	78.31	6.9	7.6
11/10/2010	62.55	71.14	6.7	8.0
12/10/2010	52.89	63.77	6.5	8.1
1/10/2011	42.27	52.93	6.5	9.0
2/10/2011	52.79	64.14	5.9	9.1
3/10/2011	53.82	80.81	6.1	8.0
4/10/2011	45.06	61.16	2.5	9.3
5/10/2011	48.47	61.08	6.0	8.7
6/10/2011	59.71	67.15	6.6	7.9
7/10/2011	66.65	75.95	3.5	8.2
8/10/2011	70	86.43	6.1	8.0
9/10/2011	71.21	84.62	6.7	7.6
10/10/2011	65.69	83.22	6.6	8.1
11/10/2011	67.32	77.23	6.1	9.3
12/10/2011	61.14	65.94	6.5	7.6
1/10/2012	56.48	61.59	6.0	8.9
2/10/2012	58.18	67.39	6.1	8.8
	•		90%	9.0

90% 9.0 **10%** 7.6 Honeywell - Hopewell VPDES Permit No. VA0005291

Ouftall 002

DMR	Flo)W	pH	1
Due	Monthly Avg.	Maximum	Minimum '	Maximum
Date	MGD	MGD	s.u.	s.u.
3/10/2009	30.39	36.14	6.6	8.0
4/10/2009	35.72	49.86	6.9	8.0
5/10/2009	37.52	43.73	6.8	8.0
6/10/2009	40.37	47.23	6.7	7.7
7/10/2009	34.42	44.64	7.0	7.9
8/10/2009	39.1	45.82	7.1	8.6
9/10/2009	42.16	47.61	6.6	8.3
10/10/2009	42.94	48.94	6.7	8.1
11/10/2009	35.42	47.17	6.3	7.9
12/10/2009	28.07	35.08	6.5	7.6
1/10/2010	29.05	33.47	6.4	7.4
2/10/2010	32.42	36.28	6.1	7.8
3/10/2010	29.11	38.85	5.8	7.9
4/10/2010	36.89	43.4	6.1	7.8
5/10/2010	38.61	46.61	6.7	8.0
6/10/2010	46.59	58.56	6.8	8.0
7/10/2010	51.48	69.14	5.8	8.3
8/10/2010	52.89	62.57	6.4	8.7
9/10/2010	51.21	55.77	6.4	8.4
10/10/2010	50.89	60.9	6.2	8.6
11/10/2010	39.14	51.85	6.7	8.2
12/10/2010	36.42	45.23	6.8	8.6
1/10/2011	33.84	42.93	5.9	8.5
2/10/2011	34.07	38.37	6.4	8.4
3/10/2011	35.29	42.21	6.5	8.0
4/10/2011	31.13	51.23	4.5	9.4
5/10/2011	34.99	45.8	6.7	8.0
6/10/2011	44.42	49.39	6.3	7.9
7/10/2011	44.65	54.6	1.9	8.3
8/10/2011	44.28	50.3	6.1	8.2
9/10/2011	43.56	56.27	6.4	8.2
10/10/2011	44.22	47.13	6.2	9.5
11/10/2011	40.1	54.39	6.5	7.9
12/10/2011	39.89	46.32	6.4	8.7
1/10/2012	38	51.61	6.1	8.3
2/10/2012	37.98	41.22	6.6	8.4
	•		90%	8.7

90% 8.7 **10%** 7.8

Honeywell - Hopewell VPDES Permit No. VA0005291 Ouftall 001 (Whole Effluent Toxicity Testing)

	Hardness
Date	mg/L
	as CaCO ₃
9/14/2009	80
9/15/2009	93
9/17/2009	85
11/7/2010	70
11/9/2010	63
11/11/2010	70
10/16/2011	44
10/18/2011	50
10/20/2011	50
Avg.	67

Honeywell - Hopewell VPDES Permit No. VA0005291 Ouftall 002 (Whole Effluent Toxicity Testing)

	Hardness
Date	mg/L
	as CaCO₃
9/14/2009	80
9/15/2009	80
9/17/2009	90
11/7/2010	65
11/9/2010	68
11/11/2010	70
10/2/2011	58
10/4/2011	50
10/6/2011	53
Avg.	68

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (*use the same format*) instead of completing these pages.

SEE INSTRUCTIONS.

EPA I.D. NUMBER (copy from Item 1 of Form 1)
VAD065385296

HONEYWELL - HOPEWELL OUTFALL OOI

V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C)

OUTFALL NO. 001

PART A -You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

		2. EFFLUENT						3, UN (specify if			4. INTAKE (optional)	
	a. MAXIMUM DA	ULY VALUE	b. MAXIMUM 30 (if availa			c. LONG TERM AVRG. VALUE (if available)				a. LONG 1 AVERAGE		b. NO. OF
1. POLLUTANT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a, CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSES
a. Biochemical Oxygen Demand (BOD)	5	1067	NA	NA	AN	AN	1	mg/l	kg	3	1131	1
b. Chemical Oxygen Demand (<i>COD</i>)	16	3416	NA	NA	NA	AN	1	mg/l	kg	19	7161	1
c. Total Organic Carbon (TOC)	11	3113	1.4	403	0.9	249	365	mg/l	kg	5.9	2825	365
d. Total Suspended Solids (TSS)	22	4697	NA	NA	NA	NA	1	mg/l	kg	22	8291	1
e. Ammonia (as N)	10.9	3156	2.5	693.1	1.84	498	365	mg/l	kg	0.2	98	94
f. Flow	VALUE 90.9	4	VALUE 79.8	30	VALUE 74.0		365	MGD	NA	VALUE 127.	. 1	365
g. Temperature (winter)	VALUE 27.0	0	VALUE 23.	4	VALUE 23.4		90	್		VALUE NA		NA
h. Temperature (summer)	VALUE 44.	7	VALUE 41.	6	VALUE 40.3		90	°C	;	VALUE NA		NA
i. pH	MINIMUM 2.8	MAXIMUM 8.5	MINIMUM 6.3	MAXIMUM 7.2			365	STANDAR	D UNITS			20

PART B — Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instructions for additional details and requirements.

qual	ntitative dat	a or an exp	n explanation of their presence in your discharge. Complete one table for each outlail. See the instructions for additional details and requirements.											
	2. MA	RK "X"			3.	EFFLUENT				4. UNIT	rs	5. INT/	AKE (optiona	ıl)
1. POLLUTANT AND	8.	b.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM A' (if availa			0010011		a. LONG TERM A VALUE		L NO 05
CAS NO. (if available)	BELIEVED PRESENT		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
a. Bromide (24959-67-9)		X	0.013	2.78	ДИ	NA	NA	AN	1	mg/l	kg	0.013	4.9	1
b. Chlorine, Total Residual	X		NA	NA	NA	NA	AN	AN	NA	mg/l	kg	0.08	30.15	1
c. Color	X		50	NA	AN	AN	AN	AN	1	pcu	NA	65	NA	1
d. Fecal Coliform	X		50	NA	NA	NA	NA	NA	1	MPN/10	NA	500	NA	1
e. Fluoride (16984-48-8)	X		<0.10	<21.4	NA	AN	NA	NА	1	mg/l	kg	<0.10	<37.7	1
f. Nitrate-Nitrite (as M)	X		1.14	243.4	NA	NA	NA	NA	1	mg/l	kg			

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (*use the same format*) instead of completing these pages. SEE INSTRUCTIONS.

EPA I.D. NUMBER (copy from Item 1 of Form 1) VAD065385296 HONEYWELL - HOPEWELL OUTFALL OOZ

V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C)

OUTFALL NO.

PART A -You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

				2. EFFLU	***************************************			3. UN (specify if			4. INTAKE (optional)		
	a. MAXIMUM DA	VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM AVR (if available		1 110 05	00110711		a. LONG T AVERAGE			
1. POLLUTANT	CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES	
a. Biochemical Oxygen Demand (BOD)	5	616	AN	NA	NA	NA	1	mg/l	kg	3	1131	1	
b. Chemical Oxygen Demand (COD)	27	3327	NA	NA	NA	NA	1	mg/l	kg	19	7161	1	
c. Total Organic Carbon (TOC)	9	1222	1.4	265	0.8	131	365	mg/l	kg	5.9	2825	365	
d. Total Suspended Solids (TSS)	26	3204	NA	NA	NA	AN	1	mg/l	kg	22	8291	1	
e. Ammonia (as N)	3.3	447	0.7	94	0.3	47	365	mg/l	kg	0.2	98	94	
f. Flow	VALUE 66.4	1	VALUE 50.3	3	VALUE 41.7		365	MGD	NA	VALUE 127.	1	365	
g. Temperature (winter)	VALUE 26.	7	VALUE 24.	1	VALUE 23.7	717 - 71 - 14 - 14 - 14 - 14 - 14 - 14 -	90	°C		VALUE NA		NA	
h. Temperature (summer)	VALUE 43.	L	VALUE 40.3	3	VALUE 38.9	······································	90	°C		VALUE NA		NA	
i. pH	MINIMUM 6.1	MAXIMUM 8.7	MINIMUM 6.8	MAXIMUM 7.8			365	STANDARD	OUNITS				

PART B – Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instructions for additional details and requirements.

ļ			of all explanation of their presence in your discharge. Complete one table for each outrait. See the instructions for additional details and requirements.											
4 DOLLUTANT	2. MA	RK "X"			3.	EFFLUENT				4. UNI	rs	5. INT/	AKE (option	al)
1. POLLUTANT AND CAS NO.	a.		a. MAXIMUM DA	AILY VALUE	b. MAXIMUM 30 (if availa		LUE c. LONG TERM AVRG. VALUE (if available)					a. LONG TERM A VALUE		
(if available)	BELIEVED PRESENT		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d, NO, OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
a. Bromide (24959-67-9)		X	0.013	1.6	AN	NA	NA	NA	1	mg/l	kg	0.013	4.9	1
b. Chlorine, Total Residual	X		AN	NA	NA	NA	NA	NA	NA	mg/l	kg	0.08	30.15	1
c. Color	X		55	NA	NA	NA	AN	AN	1	pcu	NA	65	NA	1
d. Fecal Coliform	X		300	NA	AN	NA	AN	NA	1	MPN/10	NA	500	NA	1
e. Fluoride (16984-48-8)	X		0.10	12.3	NA	NA	NA	NA	1	mg/l	kg	<0.10	<37.7	1
f. Nitrate-Nitrite (as M)	X		0.57	70	NA	NA	AN	NA	1	mg/l	kg			

Н	Honeywell-Hopewell (VA0005291) Flow Weighted Average (FWA) Calculations								
Outfall	Minimum 30-Day Average Flow MGD	Mean Hardness mg/L CaCO3	Maximum Daily Temp. °C	90% pH s.u.	10% pH s.u.				
001	39.70	67	44.7	9.0	7.6				
002	24.19	68	43.1	8.7	7.8				
Total	63.89								
	FWA	67	44	8.9	7.7				

Attachment F

Site Inspection Report

VIRGINIA DEPARTMENT OF ENVIRONMENTAL QUALITY

Wastewater Facility Inspection Report

Facility Name:

James River Cogeneration Co.

Facility No.:

VA0073300

City/County:

City of Hopewell

Inspection Agency:

Date Form Completed:

DEQ - PRO

April 21, 2011

Inspection Date:

April 19, 2011

Inspector:

Mike Dare, Drew Hammond

Time Spent:

16 hrs. w/ travel & report

Reviewed By:

Unannounced Insp.?

No

FY-Scheduled Insp.?

Yes

Present at Inspection:

Dana Rieves, Cheryl Sawyer, Lew Gove. Kerry Lamb and Mike Williams were on hand for

opening comments only.

TYPE OF FACILITY:

Domestic

Industrial

[] Federal

[] Major

[] Major

[] Primary

[] Non-Federal

[] Minor

[X] Minor

[] Secondary

Population Served:

approx.: N/A - Domestic wastewater to Hopewell Regional WWTF

Number of Connections:

approx.: N/A

TYPE OF INSPECTION:

[x] Routine

Date of last inspection: April 10, 2007

[] Compliance

Agency: **DEQ/PRO**

[] Reinspection

EFFLUENT MONITORING (outfall 001):

January 2011:

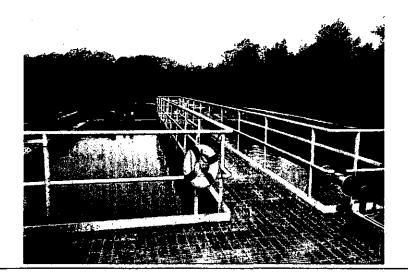
pH: 8.05 SU

Temperature: 11 deg C

Flow: 0.5584 MGD (AVG.)

February 2011:

pH: 6.96 SU


Temperature: 31 deg C

Flow: <u>0.6516</u> MGD (AVG.)

CHANGES AND/OR CONSTRUCTION

A recent upgrade of the wastewater treatment system was performed to accommodate the wastewater associated with the installation of six scrubbers.

The settling basin in the photo at right was constructed as part of the upgrade and receives wastewater from the scrubber system.

(A)	PLANT OPERATION AND MAINTENANC	E						
1.	Class and number of licensed operators	: Class II -	<u>1</u>					
2.	Hours per day plant is staffed: 24 hour	s/day						
3.	Describe adequacy of staffing:	•		[]	Good	[x] A	verage	[] Poor*
4.	Does the plant have an established prog	gram for traini	ing personnel?	[x]	Yes	[] No	o	
5 .	Describe the adequacy of the training pr	rogram:		[x]	Good	[]A\	/erage	[] Poor*
6.	Are preventive maintenance tasks sche	duled?		[x]	Yes	[] No	o*	
7.	Describe the adequacy of maintenance:			[x]	Good	[] Av	/erage	[] Poor*
8.	Does the plant experience any organic/h	nydraulic over	bading?	. (1)	'es*	[x] N	0	
	If yes, identify cause and impact on plan	it: <u>N/A</u>						
9.	Any bypassing since last inspection?		[x] Yes*	[] No				
10.	Is the on-site electric generator operatio	nal?	[]Yes	[] No*	([x] N/A		
11.	Is the STP alarm system operational?	•	[x] Yes	[] No*	ļ	[] N/A		
12.	How often is the standby generator exer	cised?	[] Weekly	[] Monthly	' [[x] Oth	er: <u>N/A</u>	
	Power Transfer Switch?		[x] Weekly	[] Monthly	· [[x] Oth	er: <u>N/A</u>	
	Alarm System?		[] Weekly	[] Monthly	· [[x] Oth	er: <u>N/A</u>	
13.	When were the cross connection control tested and certified by a contractor of			otable wate	r servi	ре? <u>Т</u>	he three	units were
14.	Is sludge disposed in accordance with the			plan?	[x]	Yes	[] No*	[] N/A
15.	Is septage received by the facility?	[]Yes	[x] No					
	Is septage loading controlled?	[]Yes	[] No *	1 [x]	I/A			
	Are records maintained?	[]Yes	[]No*	1 [x]	I/A			
16.	Overall appearance of facility:	[] Good	[x] Avera	ge []P	00г*			

Comments: #4 Operators and Chemist receive vendor and cross training. #6 Preventive maintenance work orders are generated automatically. #9 Cooling tower overflow into stormwater system on 12/2/07; Neutralization tank discharge piping leak to stormwater system on 3/22/08; RO reject water leak to stormwater outfall system on 1/6/11; Neutralization tank overflow to stormwater system on 3/24/10. #11 Alarms associated with the wastewater treatment plant are high and low pH alarms at Outfalls 102 and 001 and are monitored at the control room. #14 Solids are removed as needed from the wastewater treatment system basins and placed in a containment structure at the coal pile area. These solids are periodically transported to a landfill.

Solids removed from the wastewater treatment system are being dewatered in the foreground of the above photo. Coal to be burned in the generation of electricity can be seen in the background.

(B)	PLANT RECORDS			
1.	Which of the following records does the plant maintain? Operational Logs for each unit process Instrument maintenance and calibration Mechanical equipment maintenance Industrial waste contribution (Municipal Facilities)	[x] Yes [x] Yes [x] Yes [] Yes	[] No* [] No* [] No* [] No*	[] N/A [] N/A [] N/A [x] N/A
2.	What does the operational log contain? Visual Observations Flow Measurement Laboratory Results Process Adjustments Control Calculations Other:	[x] Yes [x] Yes [x] Yes [x] Yes [x] Yes	[] No [] No [] No [] No* [] No	[] N/A [] N/A [] N/A [] N/A
3.	What do the mechanical equipment records contain: As built plans and specs? Spare parts inventory? Manufacturers instructions? Equipment/parts suppliers? Lubrication schedules? Other: Comments:	[x] Yes [x] Yes [x] Yes [x] Yes [x] Yes None	[] No* [] No* [] No* [] No*	[] N/A [] N/A [] N/A [] N/A
4.	What do the industrial waste contribution records contain: Waste characteristics? Locations and discharge types? Impact on plant? Other: Comments:	(Applicab [] Yes [] Yes [] Yes <u>N/A</u> None	[] No*	
5.	Are the following records maintained at the plant: Equipment maintenance records Operational Log Industrial contributor records Instrumentation records Sampling and testing records	[x] Yes [x] Yes [] Yes [x] Yes [x] Yes [x] Yes	[] No* [] No* [] No* [] No*	[] N/A [] N/A [x] N/A [] N/A [] N/A
6.	Are records maintained at a different location? Where are the records maintained?	[] Yes <i>All are ava</i>	[x] No ailable on sit	te.
7.	Were the records reviewed during the inspection?	[x] Yes	[] No	
8.	Are the records adequate and the O & M Manual current? O&M Manual date written: 8/94 w/ subsequent revisions Date DEQ approved O&M: Not confirmed	[x] Yes	[] No*	[] N/A
9 .	Are the records maintained for required 3-year period?	[x] Yes	[] No*	
	mments: It was reported that the O&M manual would be revis	ed and subr	nitted to the	DEQ for review upon

Facility No. VA0073300

(C)	SAMPLING						
1.	Are sampling locations capable of pro	viding representative samples?	[x] Yes	[] No*	[] N/A		
2.	Do sample types correspond to those	required by the permit?	[x] Yes	[] No*	[] N/A		
3.	Do sampling frequencies correspond	to those required by the permit?	[x] Yes	[] No*	[] N/A		
4.	Are composite samples collected in pr	oportion to flow?	[x] Yes	[] No*	[] N/A		
5.	Are composite samples refrigerated d	uring collection?	[x] Yes	[] No*	[] N/A		
6.	Does plant maintain required records	of sampling?	[x] Yes	[] No*	[] N/A		
7.	Does plant run operational control test	s?	[x] Yes	[] No*	[] N/A		
ļ	mments:						
(D)	TESTING				•		
1.	Who performs the testing?	[x] Plant/ Lab					
		[] Central Lab	Dood & Acce	- TOO O#			
		[x] Commercial Lab - Name: <u>J.R. I</u> Zn and Biological testing	Reed & Asso	<u>:. – 188, OII</u>	& Grease, Cr,		
	If plant performs any testing, comp	lete 2-4.					
2.	What method is used for chlorine anal	ysis?	<u>HACH DR</u>	R-2500 (Free	Chlorine)		
3.	Is sufficient equipment available to pe	form required tests?	[x] Yes	[] No*	[] N/A		
4.	Does testing equipment appear to be	clean and/or operable?	[x] Yes	[] No*	[] N/A		
Co	mments: Please see attached DEQ <i>La</i>	boratory Inspection Report.					
(E)	FOR INDUSTRIAL FACILITIES W/ TE	CHNOLOGY BASED LIMITS					
1.	Is the production process as describe	d in the permit application? (If no, desc	cribe changes	in comments	s)		
	[x] Yes [] No* [] N/A						
2.	Do products and production rates corr	espond to the permit application? (If no	o, list differend	es in comme	nts section)		
	[] Yes [] No* [x] N/A						
3.	Has the State been notified of the changes and their impact on plant effluent?						
	[] Yes [] No* [x] N/A						
Co	mments: None						

FOLLOW UP TO COMPLIANCE RECOMMENDATIONS FROM THE April 10, 2007 DEQ INSPECTION:

There were no compliance recommendations.

FOLLOW UP TO GENERAL RECOMMENDATIONS FROM THE April 10, 2007 DEQ INSPECTION:

There were no general recommendations.

INSPECTION REPORT SUMMARY

Compliance Recommendations/Request for Corrective Action:

There are no compliance recommendations at this time.

General Recommendations/Observations:

There are no general recommendations at this time.

Comments:

One of two generating units was down for routine maintenance at the time of inspection. Photos courtesy of James River Cogeneration Company.

Items evaluated during this inspection include (check all that apply):

[x] Yes	[] No		Operational Units
[x] Yes	[] No		O & M Manual
[x] Yes	[] No		Maintenance Records
[]Yes	[] No	[x] N/A	Pathogen Reduction & Vector Attraction Reduction
[x] Yes	[] No	[] N/A	Sludge Disposal Plan
[]Yes	[] No	[x] N/A	Groundwater Monitoring Plan
[x] Yes	[] No	[] N/A	Storm Water Pollution Prevention Plan See SW Inspection Report for VAR050553
[x] Yes	[] No	[] N/A	Permit Special Conditions
[]Yes	[x] No	[] N/A	Permit Water Quality Chemical Monitoring
[x] Yes	[]No	[] N/A	Laboratory Records See Lab Report
			·

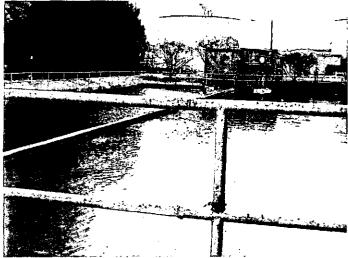
UNIT PROCESSES

General Overview: The discharges from outfalls 101 and 102 combine and flow to outfall 001.

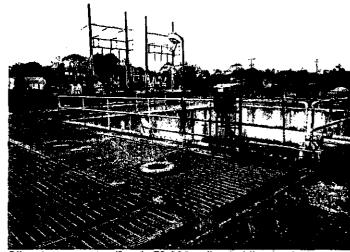
Cooling Towers (Outfall 101): The cogeneration facility is made up of two independent power generating plants, each served by one of two 8-cell cooling towers. The blow down from the 2 cooling towers combines to form the discharge at Internal outfall 101. The towers are periodically dosed with sodium hypochlorite and sodium bromide. A dispersant is added to the cooling water to prevent mineral deposits in the towers. Each tower is equipped with an in-line magnetic flow meter. The cooling tower discharge is sampled from the upturned discharge pipe, located in the mixing chamber where the flow combines with flow from outfall 102.

Wastewater Basins (Outfall 102): Coal pile runoff, boiler blow down, WTP neutralization tank and settling basin effluents, turbine room sump and drop drain discharges from within the plant area - all drain to two concrete settling basins. The basins are generally operated one at a time. All influent combines in a common tank at the head of the basins. An in-line pH meter monitors the influent pH enabling Operators to adjust the pH prior to the basins. The wastewater flows from the common tank into the "basin header", a shallow trough that stills the water and allows most solids to settle. The trough is cleaned as needed with the solids being placed in a containment structure at the coal pile area. The wastewater spills over the top of the trough into the basin. Any floating material on the basin surface is kept from discharging via a baffle, curtain and oil absorbent booms located just ahead of the discharge weir. For mixing purposes, recirculation pumps are used to pull water from the end of each basin, prior to the discharge weir, and return it to the head of the basin. The basins have been equipped with air diffusers for use if needed. The settling basin overflow makes up Internal outfall 102.

Outfall 102 flow is the calculated difference of the metered flow values for outfall 001 and outfall 101.

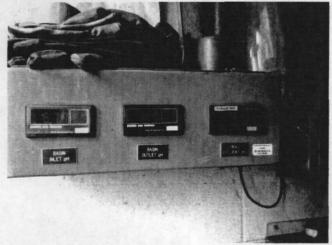

Coal Pile: Surface run-off from the coal pile area is captured by a perimeter "V-ditch" and conveyed, via gravity, to the wastewater basins. Solids removed from the wastewater basins are dewatered in the coal pile area. The solids are periodically hauled to a landfill.

Water Treatment Plant: The facility operates and maintains a water treatment plant to treat water for use in the boilers. The treatment system consists of 3 carbon filters, 2 cation columns, a decarbonization unit and 2 anion columns. The cationic and anionic resin columns treat varying amounts of water between recharging. The cationic resin recharges with sulfuric acid; the anionic resin with caustic soda. The carbon filters are backwashed periodically. All wastewater from the WTP is collected in the neutralization tank before going to the wastewater basins. One blower provides mixing to the neutralization tank when needed.


Outfall 001: From the mixing chamber the combined flow from outfalls 101 and 102 enter the final outfall 001 vault. pH is continuously monitored here, with low and high pH alarms. H₂SO₄ and caustic soda are automatically fed as needed to adjust pH. At the time of the inspection the continuous monitor read 7.57 S.U.

Miscellaneous:

An onsite Oil-Water Separator receives stormwater from lube oil AST and transformer containment areas. Flow enters a two cell oil-water separator. Discharge from the oil-water separator enters a 78,000 gallon holding basin. The basin is equipped with two pumps that are operated manually as required to pump the water to the stormwater system. The basin allows for a visual inspection of the water prior to being pumped.



Solids in the process stream settle out in the above wastewater basins

Oil-water separator (front); 78,000 gallon holding basin (at rear)

UNIT PROCESS: Flow Measurement (VPDES Outfall No.001) Parshall Flume, bubbler/head differential with totalizer 1. Type measuring device: Present reading: 2. Not ascertained 3. Bypass channel? [] Yes [x] No Metered? [] Yes [] No* [x] N/A Return flows discharged upstream from meter? [] Yes [x] No If Yes, identify: N/A Device operating properly? 5. [x] Yes [] No* 6. Date of last calibration: September 16, 2010 Evidence of following problems: 7. a. Obstructions? [] Yes* [x] No b. Grease? [] Yes* [x] No General condition: [x] Good [] Fair []Poor* Comments: None UNIT PROCESS: VPDES Outfall No.001 Type outfall: [] Shore based [] Submerged Not observed 1. [] Headwall Type if shore based: [] Wingwall [] Rip Rap 2. [] N/A [] No 3. Flapper valve? []Yes Erosion of bank? Yes* 4. [] No [] N/A [] Yes * 5. Effluent plume visible? [] No Comments: The effluent discharge was clear at the final outfall vault. Outfall 001 discharges to a remote, effluent dominated, stream on Honeywell property located on the opposite side of Route 10. Condition of outfall and supporting structures: [] Good [] Fair [] Poor * Not observed 6. Final effluent, evidence of following problems: a. Oil sheen? [] Yes* [x] No b. Grease? [] Yes* [x] No [x] No c. Sludge bar? [] Yes* [x] No d. Turbid effluent? [] Yes*

Yes*

[] Yes*

[x] No

e. Visible foam?

Unusual odor?

Photo is of wastewater basin pH transmitter

[x] No Comments: The effluent was observed at the final outfall vault.

Attachment G

Effluent DMR Data

Outfall 001

DMR	Flow		pl	рН	
Due	Monthly Avg.	Maximum	Minimum	Maximum	Maximum
Date	MGD	MGD	s.u.	s.u.	°C
3/10/2009	0.6297	0.8352	7.88	7.88	22.0
4/10/2009	0.6826	0.9641	8.89	8.89	20.0
5/10/2009	0.7695	1.2448	8.91	8.91	24.0
6/10/2009	0.6333	0.9996	6.91	6.91	24.0
7/10/2009	0.7306	0.9853	7.47	7.47	18.0
8/10/2009	0.7729	0.9972	7	7	30.0
9/10/2009	0.8911	1.232	6.9	6.9	32.0
10/10/2009	0.7373	1.0278	8.03	8.03	24.0
11/10/2009	0.7903	1.2586	7.38	7.38	24.0
12/10/2009	1.0573	1.6595	8.13	8.13	25.0
1/10/2010	0.446	0.8349	5.17	7.92	17.0
2/10/2010	0.5905	1.0039	8.62	8.62	21.0
3/10/2010	0.8122	1.017	7.19	7.19	18.0
4/10/2010	0.9139	1.4968	7.71	7.51	18.0
5/10/2010	1.1202	1.4185	7.19	7.19	22.0
6/10/2010	1.2402	1.7628	8.78	8.78	25.0
7/10/2010	1.2744	1.5996	8.28	8.28	28.0
8/10/2010	0.8617	1.6658	8.32	8.32	31.0
9/10/2010	0.503	0.8059	8.84	8.84	31.0
10/10/2010	0.5877	1.5809	8.78	8.78	27.0
11/10/2010	0.5127	0.947	8.49	8.49	17.0
12/10/2010	0.4231	0.6575	6.27	6.27	27.0
1/10/2011	0.4442	0.6729	8.29	8.29	23.0
2/10/2011	0.5584	0.79	8.05	8.05	11.0
3/10/2011	0.6516	1.0322	6.96	6.96	31.0
4/10/2011	0.7286	0.9582	7.78	7.78	31.0
5/10/2011	0.7513	1.1018	7.29	7.29	25.0
6/10/2011	1.4141	2.1027	7.26	7.26	25.0
7/10/2011	1.5199	1.8987	8.29	8.29	26.0
8/10/2011	1.8289	2.8215	7.04	7.04	30.0
9/10/2011	1.4729	2.1818	8.27	8.27	32.0
10/10/2011	1.5127	2.218	7.27	7.27	28.0
11/10/2011	1.4281	1.9042	8.13	8.13	23.0
12/10/2011	1.4217	1.7463	7.77	7.77	21.0
1/10/2012	1.276	1.5132	6.58	6.58	27.0
2/10/2012	0.7042	1.0952	8.28	8.28	23
Max.	1.83	2.82	90%	8.8	31
			10%	6.9	

James River Genco, LLC VPDES Permit No. VA0073300 Outfall 101

DMR	Flow		Free Available Chlorine	
Due	Monthly Avg.	Maximum	Monthly Avg.	Maximum
Date	MGD	MGD	mg/L	mg/L
3/10/2009	0.0469	0.1391	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
4/10/2009	0.0605	0.1933	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
5/10/2009	0.144	0.4312	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
6/10/2009	0.0442	0.1308	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
7/10/2009	0.102	0.2313	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
8/10/2009	0.0654	0.1361	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
9/10/2009	0.0879	0.2256	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
10/10/2009	0.0437	0.1479	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
11/10/2009	0.06	0.1661	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
12/10/2009	0.1471	0.4015	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
1/10/2010	0.1209	0.4176	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
2/10/2010	0.0518	0.2104	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
3/10/2010	0.0332	0.1304	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
4/10/2010	0.021	0.113	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
5/10/2010	0.0341	0.0918	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
6/10/2010	0.0465	0.1282	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
7/10/2010	0.1024	0.2099	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
8/10/2010	0.1522	0.2311	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
9/10/2010	0.1537	0.3077	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
10/10/2010	0.1598	0.3416	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
11/10/2010	0.1074	0.2995	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
12/10/2010	0.0158	0.0477	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
1/10/2011	0.1173	0.3609	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
2/10/2011	0.1693	0.3348	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
3/10/2011	0.1081	0.2462	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
4/10/2011	0.0616	0.212	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
5/10/2011	0.0311	0.1121	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
6/10/2011	0.0408	0.1586	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
7/10/2011	0.1332	0.4759	0.10	0.10
8/10/2011	0.1549	0.4689	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
9/10/2011	0.1666	0.5335	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
10/10/2011	0.0903	0.3851	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
11/10/2011	0.0224	0.1247	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
12/10/2011	0.0513	0.1823	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
1/10/2012	0.018	0.1189	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
2/10/2012	0.0762	0.1782	0.15	0.15
Max.	0.169	0.534		

James River Genco, LLC VPDES Permit No. VA0073300

Outfall 101

DMR	Total Recoverable Zinc			
Due	Monthly Avg.	Monthly Avg.	Maximum	Maximum
Date	mg/L	kg/d	mg/L	kg/d
3/10/2009	0.119	<ql< td=""><td>0.119</td><td>0.0000</td></ql<>	0.119	0.0000
4/10/2009	0.070	0.002	0.070	0.002
5/10/2009	0.021	<ql< td=""><td>0.021</td><td>0.000</td></ql<>	0.021	0.000
6/10/2009	0.030	<ql< td=""><td>0.030</td><td>0.000</td></ql<>	0.030	0.000
7/10/2009	0.060	0.018	0.060	0.018
8/10/2009	0.025	<ql< td=""><td>0.025</td><td><ql< td=""></ql<></td></ql<>	0.025	<ql< td=""></ql<>
9/10/2009	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
10/10/2009	0.092	<ql< td=""><td>0.092</td><td>0.000</td></ql<>	0.092	0.000
11/10/2009	0.041	<ql< td=""><td>0.041</td><td>0.000</td></ql<>	0.041	0.000
12/10/2009	0.025	<ql< td=""><td>0.025</td><td>0.000</td></ql<>	0.025	0.000
1/10/2010	0.029	<ql< td=""><td>0.029</td><td><ql< td=""></ql<></td></ql<>	0.029	<ql< td=""></ql<>
2/10/2010	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
3/10/2010	0.035	<ql< td=""><td>0.035</td><td>0.000</td></ql<>	0.035	0.000
4/10/2010	0.059	0.005	0.059	0.005
5/10/2010	0.109	<ql< td=""><td>0.109</td><td>0.000</td></ql<>	0.109	0.000
6/10/2010	0.081	0.004	0.081	0.004
7/10/2010	0.081	0.003	0.081	0.003
8/10/2010	0.044	<ql< td=""><td>0.044</td><td>0.000</td></ql<>	0.044	0.000
9/10/2010	0.035	<ql< td=""><td>0.035</td><td>0.000</td></ql<>	0.035	0.000
10/10/2010	0.042	<ql< td=""><td>0.042</td><td>0.000</td></ql<>	0.042	0.000
11/10/2010	0.022	<ql< td=""><td>0.022</td><td>0.000</td></ql<>	0.022	0.000
12/10/2010	0.088	<ql< td=""><td>0.088</td><td>0.000</td></ql<>	0.088	0.000
1/10/2011	0.047	<ql< td=""><td>0.047</td><td>0.000</td></ql<>	0.047	0.000
2/10/2011	0.033	<ql< td=""><td>0.033</td><td><ql< td=""></ql<></td></ql<>	0.033	<ql< td=""></ql<>
3/10/2011	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
4/10/2011	0.050	<ql< td=""><td>0.050</td><td><ql< td=""></ql<></td></ql<>	0.050	<ql< td=""></ql<>
5/10/2011	0.015	0.0003	0.015	0.0003
6/10/2011	0.043	<ql< td=""><td>0.043</td><td>0.0000</td></ql<>	0.043	0.0000
7/10/2011	0.045	<ql< td=""><td>0.045</td><td>0.0000</td></ql<>	0.045	0.0000
8/10/2011	0.056	0.0056	0.056	0.0056
9/10/2011	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
10/10/2011	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
11/10/2011	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
12/10/2011	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
1/10/2012	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
2/10/2012	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>

James River Genco, LLC VPDES Permit No. VA0073300

Outfall 101

DMR	Total Recoverable Chromium			
Due	Monthly Avg.	Monthly Avg.	Maximum	Maximum
Date	mg/L	kg/d	mg/L	kg/d
3/10/2009	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
6/10/2009	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
9/10/2009	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
12/10/2009	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
3/10/2010	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
6/10/2010	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
9/10/2010	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
12/10/2010	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
3/10/2011	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
6/10/2011	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
9/10/2011	0.002	0.0008	0.002	0.0008
12/10/2011	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>

DMR	Flow		Total Suspended Solids	
Due	Monthly Avg.	Maximum	Monthly Avg.	Maximum
Date	MGD	MGD	mg/L	mg/L
3/10/2009	0.6012	0.7996	20.0	20.0
4/10/2009	0.6435	0.829	28.0	28.0
5/10/2009	0.6303	0.9579	7.2	7.2
6/10/2009	0.6062	0.8688	14.0	14.0
7/10/2009	0.6354	0.8115	13.0	13.0
8/10/2009	0.7159	0.9617	12.0	12.0
9/10/2009	0.8032	1.0125	8.5	8.5
10/10/2009	0.7096	1.0278	17.0	17.0
11/10/2009	0.7496	1.0925	8.0	8.0
12/10/2009	0.92	1.4744	9.3	9.3
1/10/2010	0.3291	0.5936	12.0	12.0
2/10/2010	0.5437	0.7935	28.0	28.0
3/10/2010	0.7801	0.9622	11.0	11.0
4/10/2010	0.9031	1.4282	21.8	21.8
5/10/2010	1.1043	1.4028	52.0	52.0
6/10/2010	1.2027	1.7616	12.0	12.0
7/10/2010	1.172	1.4369	30.0	30.0
8/10/2010	0.7095	1.4861	6.6	6.6
9/10/2010	0.3494	0.5856	14.0	14.0
10/10/2010	0.4386	1.2955	11.0	11.0
11/10/2010	0.4261	0.919	7.8	7.8
12/10/2010	0.4152	0.6347	8.5	8.5
1/10/2011	0.3458	0.5686	1.9	1.9
2/10/2011	0.389	0.6498	14.0	14.0
3/10/2011	0.5975	0.9571	11.0	11.0
4/10/2011	0.6849	0.8392	0.0	0.0
5/10/2011	0.7306	1.0066	1.8	1.8
6/10/2011	1.3838	2.0129	12.0	12.0
7/10/2011	1.3867	1.8679	6.7	6.7
8/10/2011	1.6739	2.3859	20.0	20.0
9/10/2011	0	0	3.3	3.3
10/10/2011	1.4495	2.0598	53.8	53.8
11/10/2011	1.4144	1.7795	8.4	8.4
12/10/2011	1.3858	1.6478	9.3	9.3
1/10/2012	1.2644	1.5058	13.0	13.0
2/10/2012	0.6477	0.9448	21.0	21.0
Max.	1.67	2.39		

James River Genco, LLC VPDES Permit No. VA0073300

Outfall 102

DMR	Oil & Grease		
Due	Monthly Avg.	Maximum	
Date	mg/L	mg/L	
3/10/2009	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
4/10/2009	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
5/10/2009	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
6/10/2009	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
7/10/2009	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
8/10/2009	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
9/10/2009	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
10/10/2009	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
11/10/2009	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
12/10/2009	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
1/10/2010	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
2/10/2010	6.8	6.8	
3/10/2010	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
4/10/2010	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
5/10/2010	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
6/10/2010	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
7/10/2010	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
8/10/2010	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
9/10/2010	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
10/10/2010	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
11/10/2010	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
12/10/2010	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
1/10/2011	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
2/10/2011	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
3/10/2011	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
4/10/2011	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
5/10/2011	<5	<5	
6/10/2011	<5	<5	
7/10/2011	<5	<5	
8/10/2011	<5	< 5	
9/10/2011	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
10/10/2011	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
11/10/2011	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>	
12/10/2011 1/10/2012	<ql <ql< td=""><td><ql <ql< td=""></ql<></ql </td></ql<></ql 	<ql <ql< td=""></ql<></ql 	
2/10/2012	· ·	<ql <ql< td=""></ql<></ql 	
2/10/2012	<ql< td=""><td><ul_< td=""></ul_<></td></ql<>	<ul_< td=""></ul_<>	

James River Genco, LLC VPDES Permit No. VA0073300

Outfall 001

(WET Testing & Attachment A Monitoring)

	Hardness
Date	mg/L
	as CaCO₃
7/15/2009	268
8/26/2009	340
8/2/2010	330
6/29/2011	210
10/19/2011	168
11/16/2011	252
12/14/2011	156
Avg.	246

Attachment H

Water Quality Criteria Monitoring Summary

WATER QUALITY CRITERIA MONITORING SUMMARY

CHEMICAL	REQUIRED QUANTIFICATION LEVEL (1)	REPORTED RESULTS (μg/L)	
METALS			
Antimony, dissolved	1.4	<0.5	
Arsenic, dissolved	1.0	0.91	
Cadmium, dissolved	0.3	<0.08	
Chromium III, dissolved (3)	3.6	<3	
Chromium VI, dissolved (3)	1.6	<3	
Copper, dissolved	0.50	6.9	
Lead, dissolved	0.50	<0.1	
Mercury, dissolved	1.0	<5	
Nickel, dissolved	0.94	4.1	
Selenium, Total Recoverable	2.0	0.88	
Silver, dissolved	0.20	<0.5	
Thallium, dissolved	(2)	<5	
Zinc, dissolved	3.6	3.0	
PESTICI	DES / PCB'S		
Aldrin	0.05	<0.05 (4)	
Chlordane	0.2	<0.2 (4)	
Chlorpyrifos (synonym = Dursban)	(2)	<0.2 (4)	
DDD	0.1	<0.05 (4)	
DDE	0.1	<0.05 (4)	
DDT	0.1	<0.05 (4)	
Demeton	(2)	<1 (4)	
Diazinon	(2)	<1	
Dieldrin	0.1	<0.05 (4)	
Alpha-Endosulfan	0.1	<0.05	

CHEMICAL	REQUIRED QUANTIFICATION LEVEL (1)	REPORTED RESULTS (µg/L)
Beta-Endosulfan	0.1	<0.05
Endosulfan Sulfate	0.1	<0.05 (4)
Endrin	0.1	<0.05 (4)
Endrin Aldehyde	(2)	<0.05 (4)
Guthion	(2)	<1 (4)
Heptachlor	0.05	<0.05 (4)
Heptachlor Epoxide	(2)	<0.05 (4)
Hexachlorocyclohexane Alpha-BHC	(2)	<5
Hexachlorocyclohexane Beta-BHC	(2)	<5
Hexachlorocyclohexane Gamma-BHC or Lindane	(2)	<5
Kepone	(2)	<5
Malathion	(2)	<1 (4)
Methoxychlor	(2)	<0.05 (4)
Mirex	(2)	<0.05 (4)
Parathion	(2)	<1 (4)
PCB Total	7.0	<5
Toxaphene	5.0	<0.05 (4)
BASE NEUTRA	L EXTRACTABL	.ES
Acenaphthene	10.0	<5
Anthracene	10.0	<5
Benzidine	(2)	<5
Benzo (a) anthracene	10.0	<5
Benzo (b) fluoranthene	10.0	<5
Benzo (k) fluoranthene	10.0	<5
Benzo (a) pyrene	10.0	<5
Bis 2-Chloroethyl Ether	(2)	<5
Bis 2-Chloroisopropyl Ether	(2)	<5

CHEMICAL	REQUIRED QUANTIFICATION LEVEL (1)	REPORTED RESULTS (μg/L)
Butyl benzyl phthalate	10.0	<5
2-Chloronaphthalene	(2)	<5
Chrysene	10.0	<5
Dibenz(a,h)anthracene	20.0	<5
Dibutyl phthalate (synonym = Di-n-Butyl Phthalate)	10.0	<5
1,2-Dichlorobenzene	10.0	<5
1,3-Dichlorobenzene	10.0	<5
1,4-Dichlorobenzene	10.0	<5
3,3-Dichlorobenzidine	(2)	<5
Diethyl phthalate	10.0	<5
Bis-2-ethylhexyl phthalate	10.0	<5
Dimethyl phthalate	(2)	<5
2,4-Dinitrotoluene	10.0	<5
1,2-Diphenylhydrazine	(2)	<5
Fluoranthene	10.0	<5
Fluorene	10.0	<5
Hexachlorobenzene	(2)	<5
Hexachlorobutadiene	(2)	<5
Hexachlorocyclopentadiene	(2)	<5
Hexachloroethane	(2)	<5
Indeno(1,2,3-cd)pyrene	20.0	<5
Isophorone	10.0	<5
Nitrobenzene	10.0	<5
N-Nitrosodimethylamine	(2)	<5
N-Nitrosodi-n-propylamine	(2)	<5
N-Nitrosodiphenylamine	(2)	<5
Pyrene	10.0	<5

CHEMICAL	REQUIRED QUANTIFICATION LEVEL (1)	REPORTED RESULTS (µg/L)
1,2,4-Trichlorobenzene	10.0	<5
VOL	ATILES	
Acrolein	(2)	<50
Acrylonitrile	(2)	<50
Benzene	10.0	<5
Bromoform	10.0	<5
Carbon Tetrachloride	10.0	<5
Chlorobenzene (synonym = monochlorobenzene)	50.0	<5
Chlorodibromomethane	10.0	<5
Chloroform	10.0	100
Dichloromethane (synonym = methylene chloride)	20.0	<5
Dichlorobromomethane	10.0	18
1,2-Dichloroethane	10.0	<5
1,1-Dichloroethylene	10.0	<5
1,2-trans-dichloroethylene	(2)	<5
1,2-Dichloropropane	(2)	<5
1,3-Dichloropropene	(2)	<5
Ethylbenzene	10.0	<5
Methyl Bromide	(2)	<10
1,1,2,2-Tetrachloroethane	(2)	<5
Tetrachloroethylene	10.0	<5
Toluene	10.0	<5
1,1,2-Trichloroethane	(2)	<5
Trichloroethylene	10.0	<5
Vinyl Chloride	10.0	<10
ACID EXTRACTABLES		
2-Chlorophenol	10.0	<5

CHEMICAL	REQUIRED QUANTIFICATION LEVEL (1)	REPORTED RESULTS (µg/L)
2,4 Dichlorophenol	10.0	<5
2,4 Dimethylphenol	10.0	<5
2,4-Dinitrophenol	(2)	<20
2-Methyl-4,6-Dinitrophenol	(2)	<5
Nonylphenol	(2)	<5
Pentachlorophenol	50.0	<10
Phenol	10.0	<5
2,4,6-Trichlorophenol	10.0	<5
MISCEL	LANEOUS	
Ammonia as NH3-N	200	<100
Chlorides	(2)	58000
Chlorine, Total Residual	100	<100
Cyanide, Free	10.0	<5
E. coli (N/CML)	(2)	<1
Hydrogen Sulfide	(2)	400
Tributyltin ⁽⁷⁾	(2)	<0.03
Hardness (mg/L as CaCO ₃)	(2)	168

FOOTNOTES:

(1) Quantification level (QL) is defined as the lowest concentration used for the calibration of a measurement system when the calibration is in accordance with the procedures published for the required method.

The quantification levels indicated for the metals are actually Specific Target Values developed for this permit. The Specific Target Value is the approximate value that may initiate a wasteload allocation analysis. Target values are not wasteload allocations or effluent limitations. The Specific Target Values are subject to change based on additional information such as hardness data, receiving stream flow, and design flows.

Units for the quantification level are micrograms/liter unless otherwise specified.

(2) The QL is at the discretion of the permittee. For any substances addressed in 40 CFR Part 136, the permittee shall use one of the approved methods in 40 CFR Part 136.

- (3) Both Chromium III and Chromium VI may be measured by the total chromium analysis. If the result of the total chromium analysis is less than or equal to the lesser of the Chromium III or Chromium VI method QL, the results for both Chromium III and Chromium VI can be reported as "<[QL]", where the actual analytical test QL is substituted for [QL].
- (4) Monitoring data carried forward from the 2007 permit reissuance. The permittee indicated that "the testing results from the 2007 VPDES Permit Application are still believed to be representative of the facility's effluent. The general operations and the raw materials utilized at the facility have not changed significantly and have been consistent since 2007."

Attachment I

MSTRANTI & STATS Analyses

MSTRANTI DATA SOURCE REPORT

VA0073300 - James River Genco, LLC

Strea	am Information	
Mean Hardness	Calculated from data provided with Honeywell-Hopewell whole effluent toxicity testing reports (see Attachment E)	
90% Temperature (annual)	Calculated from Honeywell-Hopewell EPA Form 2C application data (see Attachment E)	
90% Temperature (wet season)	Not applicable, a winter effluent tier has not been included in the permit	
90% Maximum pH	Calculated from Honeywell-Hopewell effluent data	
10% Maximum pH	(see Attachment E)	
Tier Designation	Flow frequency analysis memo (see Attachment A)	
Stream Flows		
All Data	Calculated from Honeywell-Hopewell effluent data (see Attachment E)	
Mixir	ng Information	
All Data	MIX.exe analysis (see below)	
Efflue	ent Information	
Mean Hardness	Calculated from data provided with whole effluent toxicity testing reports and water quality criteria monitoring (see Attachment G)	
90% Temperature (annual)	Calculated from data provided on monthly discharge monitoring reports (see Attachment G)	
90% Temperature (wet season)	Not applicable, a winter effluent tier has not been included in the permit	
90% Maximum pH	Calculated from data provided on monthly	
10% Maximum pH	discharge monitoring reports (see Attachment G)	
Discharge Flow	Maximum 30-day value reported on monthly discharge monitoring reports (see Attachment G)	

Mixing Zone Predictions for James River Genco, LLC

```
Effluent Flow = 1.83
                            MGD
Stream 7Q10
                = 63.89
                            MGD
Stream 30Q10
                            MGD
               = 63.89
Stream 1Q10
                = 63.89
                            MGD
               = 0.00054 \text{ ft/ft}
Stream slope
Stream width
               = 56
                            ft
Bottom scale = 2
Channel scale = 1
```

The stream slope, stream width, bottom scale, and channel scale have been carried forward from the 2007 mixing zone analysis. In addition, the stream width was verified utilizing the most recent Virginia Environmental Geographic Inforamtion Systems (VEGIS) aerial photography.

Mixing Zone Predictions @ 7010

Recommendation:

A complete $\min x$ assumption is appropriate for this situation and the entire 7Q10 may be used.

Mixing Zone Predictions @ 30Q10

```
Depth = 2.4453 ft

Length = 1848.22 ft

Velocity = 0.7429 ft/sec

Residence Time = 0.0288 days
```

Recommendation:

A complete $\min x$ assumption is appropriate for this situation and the entire 30Q10 may be used.

Mixing Zone Predictions @ 1Q10

Recommendation:

A complete $\min x$ assumption is appropriate for this situation and the entire 1Q10 may be used.

Virginia DEQ Mixing Zone Analysis Version 2.1

FRESHWATER WATER QUALITY CRITERIA / WASTELOAD ALLOCATION ANALYSIS

Facility Name: James River Genco, LLC Permit No.: VA0073300

Receiving Stream: Gravelly Run Version: OWP Guidance Memo 00-2011 (8/24/00)

Stream Information		
Mean Hardness (as CaCO3) =	67	mg/L
90% Temperature (Annual) =	44	deg C
90% Temperature (Wet season) =	NA	deg C
90% Maximum pH =	8.9	SU
10% Maximum pH =	7.7	SU
Tier Designation (1 or 2) =	1	
Public Water Supply (PWS) Y/N? =	N	
Trout Present Y/N? =	N	
Early Life Stages Present Y/N? =	Υ	

Stream Flows		
1Q10 (Annual) =	63.89	MGD
7Q10 (Annual) =	63.89	MGD
30Q10 (Annual) =	63.89	MGD
1Q10 (Wet season) =	63.89	MGD
30Q10 (Wet season)	63.89	MGD
30Q5 =	63.89	MGD
Harmonic Mean =	63.89	MGD

Mixing Information		
Annual - 1Q10 Mix =	100	%
- 7Q10 Mix =	100	%
- 30Q10 Mix =	100	%
Wet Season - 1Q10 Mix =	100	%
- 30Q10 Mix =	100	%

Effluent Information		
Mean Hardness (as CaCO3) =	246	mg/L
90% Temp (Annual) =	31	deg C
90% Temp (Wet season) =	NA	deg C
90% Maximum pH =	8.8	SU
10% Maximum pH =	6.9	SU
Discharge Flow =	1.83	MGD

Parameter	Background		Water Qua	lity Criteria			Wasteload	Allocations		,	Antidegrada	ation Baseline		A	ntidegradation	Allocations			Most Limiti	ng Allocation	s
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic H	IH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
Acenapthene	0			na	9.9E+02			na	3.6E+04				-					-	-	na	3.6E+04
Acrolein	0			na	9.3E+00			na	3.3E+02											na	3.3E+02
Acrylonitrile ^C	0			na	2.5E+00			na	9.0E+01											na	9.0E+01
Aldrin ^C	0	3.0E+00		na	5.0E-04	1.1E+02		na	1.8E-02									1.1E+02		na	1.8E-02
Ammonia-N (mg/l) (Yearly)		. ===																			
(Teany) Ammonia-N (mg/l)	0	1.56E+00	8.68E-02	na		5.62E+01	3.12E+00	na										5.62E+01	3.12E+00	na	
(High Flow)	0	1.56E+00	#VALUE!	na		5.62E+01	#VALUE!	na										5.62E+01	#VALUE!	na	-
Anthracene	0			na	4.0E+04			na	1.4E+06											na	1.4E+06
Antimony	0			na	6.4E+02			na	2.3E+04											na	2.3E+04
Arsenic	0	3.4E+02	1.5E+02	na		1.2E+04	5.4E+03	na										1.2E+04	5.4E+03	na	
Barium	0			na				na												na	
Benzene ^C	0			na	5.1E+02			na	1.8E+04									_		na	1.8E+04
Benzidine ^C	0			na	2.0E-03			na	7.2E-02									-		na	7.2E-02
Benzo (a) anthracene ^C	0			na	1.8E-01			na	6.5E+00											na	6.5E+00
Benzo (b) fluoranthene ^C	0			na	1.8E-01			na	6.5E+00									-		na	6.5E+00
Benzo (k) fluoranthene ^C	0			na	1.8E-01			na	6.5E+00											na	6.5E+00
Benzo (a) pyrene ^C	0			na	1.8E-01			na	6.5E+00											na	6.5E+00
Bis2-Chloroethyl Ether ^C	0			na	5.3E+00			na	1.9E+02											na	1.9E+02
Bis2-Chloroisopropyl Ether	0			na	6.5E+04			na	2.3E+06									_		na	2.3E+06
Bis 2-Ethylhexyl Phthalate ^C	0			na	2.2E+01			na	7.9E+02											na	7.9E+02
Bromoform ^C	0			na	1.4E+03			na	5.0E+04									_		na	5.0E+04
Butylbenzylphthalate	0			na	1.9E+03			na	6.8E+04									_		na	6.8E+04
Cadmium	0	2.7E+00	8.8E-01	na		9.7E+01	3.1E+01	na										9.7E+01	3.1E+01	na	
Carbon Tetrachloride ^C	0			na	1.6E+01			na	5.7E+02									-	-	na	5.7E+02
Chlordane ^C	0	2.4E+00	4.3E-03	na	8.1E-03	8.6E+01	1.5E-01	na	2.9E-01									8.6E+01	1.5E-01	na	2.9E-01
Chloride	0	8.6E+05	2.3E+05	na		3.1E+07	8.3E+06	na										3.1E+07	8.3E+06	na	
TRC	0	1.9E+01	1.1E+01	na		6.8E+02	4.0E+02	na										6.8E+02	4.0E+02	na	
Chlorobenzene	0			na	1.6E+03	0.0L+02	4.0L+02 	na	5.7E+04									0.0L+02	4.0LT02 	na	5.7E+04

Parameter	Background		Water Qua	lity Criteria			Wasteload	Allocations			Antidegrada	tion Baseline		A	ntidegradation	n Allocations			Most Limitin	ng Allocations	s
(ug/l unless noted)	Conc.	Acute		HH (PWS)	НН	Acute		HH (PWS)	НН	Acute		HH (PWS)	НН	Acute		HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
Chlorodibromomethane ^C	0			na	1.3E+02			na	4.7E+03											na	4.7E+03
Chloroform	0			na	1.1E+04			na	4.0E+05											na	4.0E+05
2-Chloronaphthalene	0			na	1.6E+03			na	5.7E+04									_		na	5.7E+04
2-Chlorophenol	0			na	1.5E+02			na	5.4E+03											na	5.4E+03
Chlorpyrifos	0	8.3E-02	4.1E-02	na		3.0E+00	1.5E+00	na										3.0E+00	1.5E+00	na	-
Chromium III	0	4.4E+02	5.7E+01	na		1.6E+04	2.0E+03	na										1.6E+04	2.0E+03	na	
Chromium VI	0	1.6E+01	1.1E+01	na		5.7E+02	4.0E+02	na										5.7E+02	4.0E+02	na	
Chromium, Total	0			1.0E+02		3.7 L+02		na										3.7 E+02	4.0LT02 	na	-
Chrysene ^C	0			na	1.8E-02			na	6.5E-01											na	6.5E-01
	0	9.9E+00	6.8E+00		1.0L-02	3.5E+02	2.4E+02		0.3L-01		-		-	-				3.5E+02	2.4E+02		0.JL-01
Copper	-			na				na												na	5.7E+05
Cyanide, Free DDD ^C	0	2.2E+01	5.2E+00	na	1.6E+04	7.9E+02	1.9E+02	na	5.7E+05									7.9E+02 	1.9E+02	na	
DDE ^c	-			na	3.1E-03			na	1.1E-01										-	na	1.1E-01
DDT ^C	0			na	2.2E-03			na	7.9E-02											na	7.9E-02
	0	1.1E+00	1.0E-03	na	2.2E-03	4.0E+01	3.6E-02	na	7.9E-02									4.0E+01	3.6E-02	na	7.9E-02
Demeton	0		1.0E-01	na			3.6E+00	na										-	3.6E+00	na	
Diazinon	0	1.7E-01	1.7E-01	na		6.1E+00	6.1E+00	na										6.1E+00	6.1E+00	na	
Dibenz(a,h)anthracene ^C	0			na	1.8E-01			na	6.5E+00									-		na	6.5E+00
1,2-Dichlorobenzene	0			na	1.3E+03			na	4.7E+04									-	-	na	4.7E+04
1,3-Dichlorobenzene	0			na	9.6E+02			na	3.4E+04									-	-	na	3.4E+04
1,4-Dichlorobenzene	0			na	1.9E+02			na	6.8E+03											na	6.8E+03
3,3-Dichlorobenzidine ^C	0			na	2.8E-01			na	1.0E+01											na	1.0E+01
Dichlorobromomethane ^C	0			na	1.7E+02			na	6.1E+03											na	6.1E+03
1,2-Dichloroethane ^C	0			na	3.7E+02			na	1.3E+04											na	1.3E+04
1,1-Dichloroethylene	0			na	7.1E+03			na	2.5E+05											na	2.5E+05
1,2-trans-dichloroethylene	0			na	1.0E+04			na	3.6E+05											na	3.6E+05
2,4-Dichlorophenol	0			na	2.9E+02			na	1.0E+04									-		na	1.0E+04
2,4-Dichlorophenoxy	0			na				na											_	na	
acetic acid (2,4-D) 1,2-Dichloropropane ^C	0			na	1.5E+02			na	5.4E+03									-		na	5.4E+03
1,3-Dichloropropene ^C	0			na	2.1E+02			na	7.5E+03									-		na	7.5E+03
Dieldrin ^C	0	2.4E-01	5.6E-02	na	5.4E-04	8.6E+00	2.0E+00	na	1.9E-02		-		-	-				8.6E+00	2.0E+00	na	1.9E-02
Diethyl Phthalate	0	2.46-01	J.0L-02	na	4.4E+04	0.0L+00	2.0L+00 		1.6E+06		-		-	-				6.0E+00	2.0L+00 	na	1.6E+06
	0							na											-		3.1E+04
2,4-Dimethylphenol	0			na	8.5E+02			na	3.1E+04									_		na	
Dimethyl Phthalate	-			na	1.1E+06			na	4.0E+07									-		na	4.0E+07
Di-n-Butyl Phthalate	0			na	4.5E+03			na	1.6E+05									-	-	na	1.6E+05
2,4 Dinitrophenol	0			na	5.3E+03			na	1.9E+05									-	-	na	1.9E+05
2-Methyl-4,6-Dinitrophenol	0			na	2.8E+02			na	1.0E+04									-	-	na	1.0E+04
2,4-Dinitrotoluene ^C Dioxin 2,3,7,8-	0			na	3.4E+01			na	1.2E+03									-	-	na	1.2E+03
tetrachlorodibenzo-p-dioxin	0			na	5.1E-08			na	1.8E-06											na	1.8E-06
1,2-Diphenylhydrazine ^C	0			na	2.0E+00			na	7.2E+01											na	7.2E+01
Alpha-Endosulfan	0	2.2E-01	5.6E-02	na	8.9E+01	7.9E+00	2.0E+00	na	3.2E+03									7.9E+00	2.0E+00	na	3.2E+03
Beta-Endosulfan	0	2.2E-01	5.6E-02	na	8.9E+01	7.9E+00	2.0E+00	na	3.2E+03									7.9E+00	2.0E+00	na	3.2E+03
Alpha + Beta Endosulfan	0	2.2E-01	5.6E-02			7.9E+00	2.0E+00											7.9E+00	2.0E+00	-	
Endosulfan Sulfate	0			na	8.9E+01			na	3.2E+03											na	3.2E+03
Endrin	0	8.6E-02	3.6E-02	na	6.0E-02	3.1E+00	1.3E+00	na	2.2E+00									3.1E+00	1.3E+00	na	2.2E+00
Endrin Aldehyde	0		-	na	3.0E-01			na	1.1E+01									-	-	na	1.1E+01

Parameter	Background		Water Quali	ity Criteria			Wasteload	Allocations			Antidegrada	tion Baseline		Д	ntidegradatio	n Allocations			Most Limitin	ng Allocations	5
(ug/l unless noted)	Conc.	Acute	1 1	HH (PWS)	НН	Acute		HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute		HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
Ethylbenzene	0			na	2.1E+03			na	7.5E+04											na	7.5E+04
Fluoranthene	0			na	1.4E+02			na	5.0E+03											na	5.0E+03
Fluorene	0			na	5.3E+03			na	1.9E+05											na	1.9E+05
Foaming Agents	0			na				na												na	
Guthion	0		1.0E-02	na			3.6E-01	na											3.6E-01	na	
Heptachlor ^C	0	5.2E-01	3.8E-03	na	7.9E-04	1.9E+01	1.4E-01	na	2.8E-02									1.9E+01	1.4E-01	na	2.8E-02
Heptachlor Epoxide ^C	0	5.2E-01	3.8E-03	na	3.9E-04	1.9E+01	1.4E-01	na	1.4E-02									1.9E+01	1.4E-01	na	1.4E-02
Hexachlorobenzene ^C	0			na	2.9E-03			na	1.0E-01										-	na	1.0E-01
Hexachlorobutadiene ^C	0			na	1.8E+02			na	6.5E+03											na	6.5E+03
Hexachlorocyclohexane	Ü								0.02.700												0.02.00
Alpha-BHC ^C	0			na	4.9E-02			na	1.8E+00									-		na	1.8E+00
Hexachlorocyclohexane																					
Beta-BHC ^C Hexachlorocyclohexane	0			na	1.7E-01			na	6.1E+00									-		na	6.1E+00
Gamma-BHC ^C (Lindane)	0	9.5E-01	na	na	1.8E+00	3.4E+01		na	6.5E+01									3.4E+01	_	na	6.5E+01
Hexachlorocyclopentadiene	0	3.5L-01		na	1.1E+03	3.4E+01		na	4.0E+04									J.4L+01	-	na	4.0E+04
Hexachloroethane ^C	0			na	3.3E+01			na	1.2E+03											na	1.2E+03
Hydrogen Sulfide	0	-	2.0E+00	na	3.3L+01		7.2E+01	na	1.2L+03 		-	-	-		-	-			7.2E+01	na	1.2E+03
Indeno (1,2,3-cd) pyrene ^C	0	-	2.0L+00 		1.8E-01		7.2L+01 				-	-	-		-	-			7.2E+01 		6.5E+00
L	0	-		na				na	6.5E+00 		-	-	-		-	-			-	na	0.32+00
Iron Isophorone ^C	0	-		na				na			-	-	-		-	-		_		na	3.4E+05
	0			na	9.6E+03			na	3.4E+05									_	0.0E+00	na	
Kepone	-	7.05.04	0.0E+00	na			0.0E+00	na												na	-
Lead	0	7.8E+01	8.9E+00	na		2.8E+03	3.2E+02	na										2.8E+03	3.2E+02	na	-
Malathion	-		1.0E-01	na			3.6E+00	na										-	3.6E+00	na	-
Manganese	0	4.45.00	 7.7F.04	na		 	0.05.04	na										 05.04	 0.05.04	na	-
Mercury	0	1.4E+00	7.7E-01		4.55.00	5.0E+01	2.8E+01		 5 45 · 04									5.0E+01	2.8E+01		
Methyl Bromide Methylene Chloride ^C	0			na	1.5E+03			na	5.4E+04									-		na	5.4E+04
	0			na	5.9E+03			na	2.1E+05									-		na	2.1E+05
Methoxychlor	0		3.0E-02	na			1.1E+00	na										-	1.1E+00	na	
Mirex	0		0.0E+00	na			0.0E+00	na											0.0E+00	na	
Nickel	0	1.4E+02	1.5E+01	na	4.6E+03	5.0E+03	5.5E+02	na	1.7E+05									5.0E+03	5.5E+02	na	1.7E+05
Nitrate (as N)	0			na				na										-	-	na	
Nitrobenzene	0			na	6.9E+02			na	2.5E+04									-	-	na	2.5E+04
N-Nitrosodimethylamine ^C	0			na	3.0E+01			na	1.1E+03									_	-	na	1.1E+03
N-Nitrosodiphenylamine ^C	0			na	6.0E+01			na	2.2E+03									_	-	na	2.2E+03
N-Nitrosodi-n-propylamine ^C	0			na	5.1E+00			na	1.8E+02											na	1.8E+02
Nonylphenol	0	2.8E+01	6.6E+00			1.0E+03	2.4E+02	na										1.0E+03	2.4E+02	na	-
Parathion	0	6.5E-02	1.3E-02	na		2.3E+00	4.7E-01	na										2.3E+00	4.7E-01	na	
PCB Total ^C	0		1.4E-02	na	6.4E-04		5.0E-01	na	2.3E-02									-	5.0E-01	na	2.3E-02
Pentachlorophenol ^C	0	1.7E+01	1.3E+01	na	3.0E+01	6.0E+02	4.6E+02	na	1.1E+03									6.0E+02	4.6E+02	na	1.1E+03
Phenol	0			na	8.6E+05			na	3.1E+07									-		na	3.1E+07
Pyrene	0			na	4.0E+03			na	1.4E+05					-				-	-	na	1.4E+05
Radionuclides Gross Alpha Activity	0			na				na						-				_	-	na	-
(pCi/L)	0			na				na												na	
Beta and Photon Activity																					
(mrem/yr)	0			na				na										-	-	na	
Radium 226 + 228 (pCi/L)	0			na				na										-		na	
Uranium (ug/l)	0			na				na											-	na	

Parameter	Background		Water Qua	lity Criteria			Wasteload	Allocations			Antidegrada	tion Baseline		Ar	ntidegradat	ion Allocations			Most Limiti	ng Allocations	5
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
Selenium, Total Recoverable	0	2.0E+01	5.0E+00	na	4.2E+03	7.2E+02	1.8E+02	na	1.5E+05				-					7.2E+02	1.8E+02	na	1.5E+05
Silver	0	2.0E+00		na		7.0E+01		na										7.0E+01		na	
Sulfate	0			na				na										-		na	
1,1,2,2-Tetrachloroethane ^C	0			na	4.0E+01			na	1.4E+03									-		na	1.4E+03
Tetrachloroethylene ^C	0			na	3.3E+01			na	1.2E+03									-		na	1.2E+03
Thallium	0			na	4.7E-01			na	1.7E+01									-		na	1.7E+01
Toluene	0			na	6.0E+03			na	2.2E+05									-		na	2.2E+05
Total dissolved solids	0			na				na										-		na	
Toxaphene ^C	0	7.3E-01	2.0E-04	na	2.8E-03	2.6E+01	7.2E-03	na	1.0E-01									2.6E+01	7.2E-03	na	1.0E-01
Tributyltin	0	4.6E-01	7.2E-02	na		1.7E+01	2.6E+00	na										1.7E+01	2.6E+00	na	
1,2,4-Trichlorobenzene	0			na	7.0E+01			na	2.5E+03											na	2.5E+03
1,1,2-Trichloroethane ^C	0			na	1.6E+02			na	5.7E+03											na	5.7E+03
Trichloroethylene ^C	0			na	3.0E+02			na	1.1E+04											na	1.1E+04
2,4,6-Trichlorophenol ^C	0			na	2.4E+01			na	8.6E+02											na	8.6E+02
2-(2,4,5-Trichlorophenoxy) propionic acid (Silvex)	0			na				na												na	
Vinyl Chloride ^C	0			na	2.4E+01			na	8.6E+02											na	8.6E+02
Zinc	0	8.9E+01	8.9E+01	na	2.6E+04	3.2E+03	3.2E+03	na	9.3E+05									3.2E+03	3.2E+03	na	9.3E+05

Notes:

- 1. All concentrations expressed as micrograms/liter (ug/l), unless noted otherwise
- 2. Discharge flow is highest monthly average or Form 2C maximum for Industries and design flow for Municipals
- 3. Metals measured as Dissolved, unless specified otherwise
- 4. "C" indicates a carcinogenic parameter
- Regular WLAs are mass balances (minus background concentration) using the % of stream flow entered above under Mixing Information. Antidegradation WLAs are based upon a complete mix.
- 6. Antideg. Baseline = (0.25(WQC background conc.) + background conc.) for acute and chronic
 - = (0.1(WQC background conc.) + background conc.) for human health
- 7. WLAs established at the following stream flows: 1Q10 for Acute, 30Q10 for Chronic Ammonia, 7Q10 for Other Chronic, 30Q5 for Non-carcinogens and Harmonic Mean for Carcinogens. To apply mixing ratios from a model set the stream flow equal to (mixing ratio 1), effluent flow equal to 1 and 100% mix.

		_
Metal	Target Value (SSTV)	N
Antimony	2.3E+04	m
Arsenic	3.2E+03	gı
Barium	na	
Cadmium	1.9E+01	
Chromium III	1.2E+03	
Chromium VI	2.3E+02	
Copper	1.4E+02	
Iron	na	
Lead	1.9E+02	
Manganese	na	
Mercury	1.7E+01	
Nickel	3.3E+02	
Selenium	1.1E+02	
Silver	2.8E+01	
Zinc	1.3E+03	

Note: do not use QL's lower than the minimum QL's provided in agency guidance

3/22/2012 1:45:26 PM

Facility = James River Genco, LLC Chemical = Dissolved Arsenic Chronic averaging period = 4 WLAa = 12000 ug/L WLAc = 5400 ug/L Q. L. = 0.1 ug/L # samples/mo. = 1 # samples/wk. = 1

Summary of Statistics:

No Limit is required for this material

The data are:

0. 91 ug/L

3/22/2012 2:07:42 PM

```
Facility = James River Genco, LLC Chemical = Chloride Chronic averaging period = 4 WLAa = 31000000 ug/L WLAc = 8300000 ug/L Q. L. = 0.1 ug/L # samples/mo. = 1 # samples/wk. = 1
```

Summary of Statistics:

No Limit is required for this material

The data are:

58000 ug/L

3/22/2012 1:44:28 PM

```
Facility = James River Genco, LLC Chemical = Dissolved Chromium VI Chronic averaging period = 4 WLAa = 570 ug/L WLAc = 400 ug/L Q. L. = 0.1 ug/L # samples/mo. = 1 # samples/wk. = 1
```

Summary of Statistics:

No Limit is required for this material

The data are:

3 ug/L

3/22/2012 1:46:35 PM

Facility = James River Genco, LLC Chemical = Dissolved Copper Chronic averaging period = 4 WLAa = 350 ug/L WLAc = 240 ug/L Q. L. = 0.1 ug/L # samples/mo. = 1 # samples/wk. = 1

Summary of Statistics:

No Limit is required for this material

The data are:

6.9 ug/L

3/22/2012 2:08:42 PM

```
Facility = James River Genco, LLC Chemical = Hydrogen Sulfide Chronic averaging period = 4 WLAa = N/A WLAc = 72 ug/L Q.L. = 0.1 ug/L # samples/mo. = 1 # samples/wk. = 1
```

Summary of Statistics:

A limit is needed based on Chronic Toxicity Maximum Daily Limit = 105.305384451833 ug/L Average Weekly limit = 105.305384451833 ug/L Average Monthly LImit = 105.305384451833 ug/L

The data are:

400 ug/L

Monitoring and reporting for dissolved sulfide has been included in the 2012 permit in lieu of hydrogen sulfide effluent limitations.

```
3/22/2012 1:59:38 PM
```

```
Facility = James River Genco, LLC Chemical = Dissolved Mercury Chronic averaging period = 4 WLAa = 50 ug/L WLAc = 28 ug/L Q. L. = 0.1 ug/L # samples/mo. = 1 # samples/wk. = 1
```

Summary of Statistics:

No Limit is required for this material

The data are:

5 ug/L

3/22/2012 1: 59: 09 PM

```
Facility = James River Genco, LLC Chemical = Dissolved Nickel Chronic averaging period = 4 WLAa = 5000 \text{ ug/L} WLAc = 550 \text{ ug/L} Q. L. = 0.1 \text{ ug/L} # samples/mo. = 1 # samples/wk. = 1
```

Summary of Statistics:

No Limit is required for this material

The data are:

4. 1 ug/L

3/22/2012 2:03:27 PM

```
Facility = James River Genco, LLC Chemical = Total Recoverable Selenium Chronic averaging period = 4 WLAa = 720 ug/L WLAc = 180 ug/L Q. L. = 0.1 ug/L # samples/mo. = 1 # samples/wk. = 1
```

Summary of Statistics:

No Limit is required for this material

The data are:

0.5 ug/L

3/22/2012 2:02:46 PM

```
Facility = James River Genco, LLC Chemical = Dissolved Silver Chronic averaging period = 4 WLAa = 70 ug/L WLAc = N/A Q. L. = 0.1 ug/L # samples/mo. = 1 # samples/wk. = 1
```

Summary of Statistics:

No Limit is required for this material

The data are:

0.5 ug/L

```
3/22/2012 2:04:08 PM
```

```
Facility = James River Genco, LLC Chemical = Dissolved Zinc Chronic averaging period = 4 WLAa = 3200 \text{ ug/L} WLAc = 3200 \text{ ug/L} Q. L. = 0.1 \text{ ug/L} # samples/mo. = 1 # samples/wk. = 1
```

Summary of Statistics:

No Limit is required for this material

The data are:

3 ug/L

Attachment J

40 CFR 423 – Federal Effluent Guidelines for Steam Electric Power Generating Point Sources

§ 422.66

section, which may be discharged by a point source subject to the provisions of this subpart after application of the standards of performance for new sources:

[Metric units (kg/kkg of product); English units (lb/1,000 lb of product)]

	Effluer	nt limitations
Effluent characteristic	Maximum for any 1 day	Average of daily values for 30 consecutive days shall not ex- ceed—
TSS	0.35 .56 .21 (¹)	0.18 .28 .11 (¹)

1 Within the range 6.0 to 9.5.

§ 422.66 [Reserved]

§ 422.67 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best conventional pollutant control technology.

Except as provided in §§ 125.30 through 125.32, the following limitations establish the quantity or quality of pollutants or pollutant properties, controlled by this section, which may be discharged by a point source subject to the provisions of this subpart after application of the best conventional pollutant control technology:

[Metric units (kg/kkg of product); English units (lb/1,000 lb of product)]

	Effluent limitations						
Effluent characteristic	Maximum for any 1 day	Average of daily values for 30 con- secutive days shall not ex- ceed—					
TSS	0.35 (1)	0.18 (¹)					

¹ Within the range 6.0 to 9.5

 $[51~{\rm FR}~25000,\,{\rm July}~9,\,1986]$

PART 423—STEAM ELECTRIC POWER GENERATING POINT SOURCE CATEGORY

Sec.

423.10 Applicability.

423.11 Specialized definitions.

23.12 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT).

- 423.13 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT).
- 423.14 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best conventional pollutant control technology (BCT). [Reserved]
- 423.15 New source performance standards (NSPS).
- 423.16 Pretreatment standards for existing sources (PSES).
- 423.17 Pretreatment standards for new sources (PSNS).

APPENDIX A TO PART 423—126 PRIORITY POL-LUTANTS

AUTHORITY: Secs. 301; 304(b), (c), (e), and (g); 306(b) and (c); 307(b) and (c); and 501, Clean Water Act (Federal Water Pollution Control Act Amendments of 1972, as amended by Clean Water Act of 1977) (the "Act"; 33 U.S.C. 1311; 1314(b), (c), (e), and (g); 1316(b) and (c); 1317(b) and (c); and 1361; 86 Stat. 816, Pub. L. 92–500; 91 Stat. 1567, Pub. L. 95–217), unless otherwise noted.

Source: 47 FR 52304, Nov. 19, 1982, unless otherwise noted.

§ 423.10 Applicability.

The provisions of this part are applicable to discharges resulting from the operation of a generating unit by an establishment primarily engaged in the generation of electricity for distribution and sale which results primarily from a process utilizing fossil-type fuel (coal, oil, or gas) or nuclear fuel in conjunction with a thermal cycle employing the steam water system as the thermodynamic medium.

§ 423.11 Specialized definitions.

In addition to the definitions set forth in 40 CFR part 401, the following definitions apply to this part:

- (a) The term total residual chlorine (or total residual oxidants for intake water with bromides) means the value obtained using the amperometric method for total residual chlorine described in 40 CFR part 136.
- (b) The term low volume waste sources means, taken collectively as if from one source, wastewater from all sources except those for which specific limitations are otherwise established in this part. Low volume wastes sources include, but are not limited to:

wastewaters from wet scrubber air pollution control systems, ion exchange water treatment system, water treatment evaporator blowdown, laboratory and sampling streams, boiler blowdown, floor drains, cooling tower basin cleaning wastes, and recirculating house service water systems. Sanitary and air conditioning wastes are not included.

- (c) The term *chemical metal cleaning* waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube cleaning.
- (d) The term *metal cleaning waste* means any wastewater resulting from cleaning [with or without chemical cleaning compounds] any metal process equipment including, but not limited to, boiler tube cleaning, boiler fireside cleaning, and air preheater cleaning.
- (e) The term fly ash means the ash that is carried out of the furnace by the gas stream and collected by mechanical precipitators, electrostatic precipitators, and/or fabric filters. Economizer ash is included when it is collected with fly ash.
- (f) The term bottom ash means the ash that drops out of the furnace gas stream in the furnace and in the economizer sections. Economizer ash is included when it is collected with bottom ash.
- (g) The term *once through cooling* water means water passed through the main cooling condensers in one or two passes for the purpose of removing waste heat.
- (h) The term recirculated cooling water means water which is passed through the main condensers for the purpose of removing waste heat, passed through a cooling device for the purpose of removing such heat from the water and then passed again, except for blowdown, through the main condenser.
- (i) The term 10 year, 24/hour rainfall event means a rainfall event with a probable recurrence interval of once in ten years as defined by the National Weather Service in Technical Paper No. 40. Rainfall Frequency Atlas of the United States, May 1961 or equivalent regional rainfall probability information developed therefrom.

- (j) The term blowdown means the minimum discharge of recirculating water for the purpose of discharging materials contained in the water, the further buildup of which would cause concentration in amounts exceeding limits established by best engineering practices.
- (k) The term average concentration as it relates to chlorine discharge means the average of analyses made over a single period of chlorine release which does not exceed two hours.
- (1) The term free available chlorine shall mean the value obtained using the amperometric titration method for free available chlorine described in Standard Methods for the Examination of Water and Wastewater, page 112 (13th edition).
- (m) The term *coal pile runoff* means the rainfall runoff from or through any coal storage pile.

§ 423.12 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT).

(a) In establishing the limitations set forth in this section, EPA took into account all information it was able to collect, develop and solicit with respect to factors (such as age and size of plant, utilization of facilities, raw materials, manufacturing processes, nonwater quality environmental impacts, control and treatment technology available, energy requirements and costs) which can affect the industry subcategorization and effluent levels established. It is, however, possible that data which would affect these limitations have not been available and, as a result, these limitations should be adjusted for certain plants in this industry. An individual discharger or other interested person may submit evidence to the Regional Administrator (or to the State, if the State has the authority to issue NPDES permits) that factors relating to the equipment or facilities involved, the process applied, or other such factors related to such discharger are fundamentally different from the factors considered in the establishment of the guidelines. On the basis of such evidence or other available information, the Regional

§ 423.12

Administrator (or the State) will make a written finding that such factors are or are not fundamentally different for that facility compared to those specified in the Development Document. If such fundamentally different factors are found to exist, the Regional Administrator or the State shall establish for the discharger effluent limitations in the NPDES Permit either more or less stringent than the limitations established herein, to the extent dictated by such fundamentally different factors. Such limitations must be approved by the Administrator of the Environmental Protection Agency. The Administrator may approve or disapprove such limitations, specify other limitations, or initiate proceedings to revise these regulations. The phrase "other such factors" appearing above may include significant cost differentials. In no event may a discharger's impact on receiving water quality be considered as a factor under this paragraph.

- (b) Any existing point source subject to this subpart must achieve the following effluent limitations representing the degree of effluent reduction by the application of the best practicable control technology currently available (BPT):
- (1) The pH of all discharges, except once through cooling water, shall be within the range of 6.0-9.0.
- (2) There shall be no discharge of polychlorinated biphenyl compounds such as those commonly used for transformer fluid.
- (3) The quantity of pollutants discharged from low volume waste sources shall not exceed the quantity determined by multiplying the flow of low volume waste sources times the concentration lised in the following table:

	BPT effluent limitations					
Pollutant or pollutant property	Maximum for any 1 day (mg/l)	Average of daily values for 30 con- secutive days shall not exceed (mg/l)				
TSSOil and grease	100.0 20.0	30.0 15.0				

(4) The quantity of pollutants discharged in fly ash and bottom ash transport water shall not exceed the quantity determined by multiplying

the flow of fly ash and bottom ash transport water times the concentration listed in the following table:

	BPT effluen	t limitations
Pollutant or pollutant property	Maximum for any 1 day (mg/l)	Average of daily values for 30 con- secutive days shall not exceed (mg/l)
TSSOil and grease	100.0 20.0	30.0 15.0

(5) The quantity of pollutants discharged in metal cleaning wastes shall not exceed the quantity determined by multiplying the flow of metal cleaning wastes times the concentration listed in the following table:

	BPT effluent limitations						
Pollutant or pollutant property	Maximum for any 1 day (mg/l)	Average of daily values for 30 con- secutive days shall not exceed (mg/l)					
TSS	100.0	30.0					
Oil and grease	20.0	15.0					
Copper, total	1.0	1.0					
Iron, total	1.0	1.0					

(6) The quantity of pollutants discharged in once through cooling water shall not exceed the quantity determined by multiplying the flow of once through cooling water sources times the concentation listed in the following table:

	BPT effluent	limitations
Pollutant or pollutant property	Maximum concentra- tion (mg/l)	Average concentration (mg/l)
Free available chlorine	0.5	0.2

(7) The quantity of pollutants discharged in cooling tower blowdown shall not exceed the quantity determined by multiplying the flow of cooling tower blowdown sources times the concentration listed in the following table:

	BPT effluen	t limitations
Pollutant or pollutant property	Maximum concentra- tion (mg/l)	Average concentration (mg/l)
Free available chlorine	0.5	0.2

Environmental Protection Agency

- (8) Neither free available chlorine nor total residual chlorine may be discharged from any unit for more than two hours in any one day and not more than one unit in any plant may discharge free available or total residual chlorine at any one time unless the utility can demonstrate to the Regional Administrator or State, if the State has NPDES permit issuing authority, that the units in a particular location cannot operate at or below this level or chlorination.
- (9) Subject to the provisions of paragraph (b)(10) of this section, the following effluent limitations shall apply to the point source discharges of coal pile runoff:

Pollutant or pollutant property	BPT effluent limitations	
	Maximum concentration for any time (mg/l)	
TSS	50	

- (10) Any untreated overflow from facilities designed, constructed, and operated to treat the volume of coal pile runoff which is associated with a 10 year, 24 hour rainfall event shall not be subject to the limitations in paragraph (b)(9) of this section.
- (11) At the permitting authority's discretion, the quantity of pollutant allowed to be discharged may be expressed as a concentration limitation instead of the mass based limitations specified in paragraphs (b)(3) through (7) of this section. Concentration limitations shall be those concentrations specified in this section.
- (12) In the event that waste streams from various sources are combined for treatment or discharge, the quantity of each pollutant or pollutant property controlled in paragraphs (b)(1) through (11) of this section attributable to each controlled waste source shall not exceed the specified limitations for that waste source.

(The information collection requirements contained in paragraph (a) were approved by the Office of Management and Budget under control number 2000–0194)

 $[47\ FR\ 52304,\ Nov.\ 19,\ 1982,\ as\ amended\ at\ 48\ FR\ 31404,\ July\ 8,\ 1983]$

§ 423.13 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT).

Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this part must achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT).

- (a) There shall be no discharge of polychlorinated biphenyl compounds such as those commonly used for transformer fluid.
- (b)(1) For any plant with a total rated electric generating capacity of 25 or more megawatts, the quantity of pollutants discharged in once through cooling water from each discharge point shall not exceed the quantity determined by multiplying the flow of once through cooling water from each discharge point times the concentration listed in the following table:

Pollutant or pollutant property	BAT Effluent Limitations	
	Maximum concentration (mg/l)	
Total residual chlorine	0.20	

- (2) Total residual chlorine may not be discharged from any single generating unit for more than two hours per day unless the discharger demonstrates to the permitting authority that discharge for more than two hours is required for macroinvertebrate control. Simultaneous multi-unit chlorination is permitted.
- (c)(1) For any plant with a total rated generating capacity of less than 25 megawatts, the quantity of pollutants discharged in once through cooling water shall not exceed the quantity determined by multiplying the flow of once through cooling water sources times the concentration listed in the following table:

	BAT effluent limitations	
Pollutant or pollutant property	Maximum concentra- tion (mg/l)	Average concentration (mg/l)
Free available chlorine	0.5	0.2

§423.13

(2) Neither free available chlorine nor total residual chlorine may be discharged from any unit for more than two hours in any one day and not more than one unit in any plant may discharge free available or total residual chlorine at any one time unless the utility can demonstrate to the Regional Administrator or State, if the State has NPDES permit issuing authority, that the units in a particular location cannot operate at or below this level of chlorination.

(d)(1) The quantity of pollutants discharged in cooling tower blowdown shall not exceed the quantity determined by multiplying the flow of cooling tower blowdown times the concentration listed below:

	BAT effluent limitations	
Pollutant or pollutant property	Maximum concentra- tion (mg/l)	Average concentra- tion (mg/l)
Free available chlorine	0.5	0.2

Pollutant or pollutant property	Maximum for any 1 day – (mg/l)	Average of daily values for 30 con- secutive days shall not exceed =(mg/l)
The 126 priority pollutants (Appendix A) contained in chemicals added for cooling tower maintenance, except: Chromium, total Zinc, total	(¹) 0.2 1.0	(¹) 0.2 1.0

¹ No detectable amount.

(2) Neither free available chlorine nor total residual chlorine may be discharged from any unit for more than two hours in any one day and not more than one unit in any plant may discharge free available or total residual chlorine at any one time unless the utility can demonstrate to the Regional Administrator or State, if the State has NPDES permit issuing authority, that the units in a particular location cannot operate at or below this level of chlorination.

(3) At the permitting authority's discretion, instead of the monitoring specified in 40 CFR 122.11(b) compliance

with the limitations for the 126 priority pollutants in paragraph (d)(1) of this section may be determined by engineering calculations which demonstrate that the regulated pollutants are not detectable in the final discharge by the analytical methods in 40 CFR part 136.

(e) The quantity of pollutants discharged in chemical metal cleaning wastes shall not exceed the quantity determined by multiplying the flow of chemical metal cleaning wastes times the concentration listed in the following table:

	BAT effluent limitations	
Pollutant or pollutant property	Maximum for any 1 day (mg/l)	Average of daily values for 30 con- secutive days shall not exceed - (mg/l)
Copper, total	1.0 1.0	1.0 1.0

 $\begin{tabular}{ll} (f) & [Reserved-Nonchemical & Metal\\ Cleaning Wastes]. \end{tabular}$

(g) At the permitting authority's discretion, the quantity of pollutant allowed to be discharged may be expressed as a concentration limitation instead of the mass based limitations specified in paragraphs (b) through (e) of this section. Concentration limitations shall be those concentrations specified in this section.

(h) In the event that waste streams from various sources are combined for treatment or discharge, the quantity of each pollutant or pollutant property controlled in paragraphs (a) through (g) of this section attributable to each controlled waste source shall not exceed the specified limitation for that waste source.

(The information collection requirements contained in paragraphs (c)(2) and (d)(2) were approved by the Office of Management and Budget under control number 2040–0040. The information collection requirements contained in paragraph (d)(3) were approved under control number 2040–0033.)

[47 FR 52304, Nov. 19, 1982, as amended at 48 FR 31404, July 8, 1983]

§ 423.14 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best conventional pollutant control technology (BCT). [Reserved]

§ 423.15 New source performance standards (NSPS).

Any new source subject to this subpart must achieve the following new source performance standards:

- (a) The pH of all discharges, except once through cooling water, shall be within the range of 6.0-9.0.
- (b) There shall be no discharge of polychlorinated biphenyl compounds such as those commonly used for transformer fluid.
- (c) The quantity of pollutants discharged from low volume waste sources shall not exceed the quantity determined by multiplying the flow of low volume waste sources times the concentration listed in the following table:

	NSPS effluent limitations	
Pollutant or pollutant property	Maximum for any 1 day (mg/l)	Average of daily values for 30 con- secutive days shall not exceed (mg/l)
TSSOil and grease	100.0 20.0	30.0 15.0

(d) The quantity of pollutants discharged in chemical metal cleaning wastes shall not exceed the quantity determined by multiplying the flow of chemical metal cleaning wastes times the concentration listed in the following table:

	NSPS effluent limitations	
Pollutant or pollutant property	Maximum for any 1 day (mg/l)	Average of daily values for 30 con- secutive days shall not exceed (mg/l)
TSS	100.0 20.0 1.0 1.0	30.0 15.0 1.0 1.0

- (e) [Reserved—Nonchemical Metal Cleaning Wastes].
- (f) The quantity of pollutants discharged in bottom ash transport water shall not exceed the quantity determined by multiplying the flow of the

bottom ash transport water times the concentration listed in the following table:

	NSPS effluent limitations	
Pollutant or pollutant property	Maximum for any 1 day (mg/l)	Average of daily values for 30 con- secutive days shall not exceed (mg/l)
TSSOil and grease	100.0 20.0	30.0 15.0

- (g) There shall be no discharge of wastewater pollutants from fly ash transport water.
- (h)(1) For any plant with a total rated electric generating capacity of 25 or more megawatts, the quantity of pollutants discharged in once through cooling water from each discharge point shall not exceed the quantity determined by multiplying the flow of once through cooling water from each discharge point times the concentration listed in the following table:

Pollutant or pollutant property	NSPS effluent limitations	
	Maximum concentration (mg/l)	
Total residual chlorine	0.20	

- (2) Total residual chlorine may not be discharged from any single generating unit for more than two hours per day unless the discharger demonstrates to the permitting authority that discharge for more than two hours is required for macroinvertebrate control. Simultaneous multi-unit chlorination is permitted.
- (i)(1) For any plant with a total rated generating capacity of less than 25 megawatts, the quantity of pollutants discharged in once through cooling water shall not exceed the quantity determined by multiplying the flow of once through cooling water sources times the concentration listed in the following table:

	NSPS effluent limitations	
Pollutant of pollutant property	Maximum concentra- tion (mg/l)	Average concentra- tion (mg/l)
Free available chlorine	0.5	0.2

§ 423.16

(2) Neither free available chlorine nor total residual chlorine may be discharged from any unit for more than two hours in any one day and not more than one unit in any plant may discharge free available or total residual chlorine at any one time unless the utility can demonstrate to the Regional Administrator or State, if the State has NPDES permit issuing authority, that the units in a particular location cannot operate at or below this level of chlorination.

(j)(1) The quantity of pollutants discharged in cooling tower blowdown shall not exceed the quantity determined by multiplying the flow of cooling tower blowdown times the concentration listed below:

	NSPS effluent limitations	
Pollutant or pollutant property	Maximum concentra- tion (mg/l)	Average concentra- tion (mg/l)
Free available chlorine	0.5	0.2
Pollutant or pollutant property	Maximum for any 1 day (mg/l)	Average of daily values for 30 con- secutive days shall not exceed – (mg/l)
The 126 priority pollutants (Appendix A) contained in chemicals added for cooling tower maintenance, except: Chromium, total Zinc, total	(¹) 0.2 1.0	(¹) 0.2 1.0

¹ No detectable amount

(2) Neither free available chlorine nor total residual chlorine may be discharged from any unit for more than two hours in any one day and not more than one unit in any plant may discharge free available or total residual chlorine at any one time unless the utility can demonstrate to the Regional Administrator or State, if the State has NPDES permit issuing authority, that the units in a particular location cannot operate at or below this level of chlorination.

(3) At the permitting authority's discretion, instead of the monitoring in 40 CFR 122.11(b), compliance with the limitations for the 126 priority pollutants in paragraph (j)(1) of this section may be determined by engineering calculations which demonstrate that the regulated pollutants are not detectable in

the final discharge by the analytical methods in 40 CFR part 136.

(k) Subject to the provisions of §423.15(1), the quantity or quality of pollutants or pollutant parameters discharged in coal pile runoff shall not exceed the limitations specified below:

	Pollutant or pollutant property	NSPS effluent limitations for any time
TSS		Not to exceed 50 mg/l.

(1) Any untreated overflow from facilities designed, constructed, and operated to treat the coal pile runoff which results from a 10 year, 24 hour rainfall event shall not be subject to the limitations in §423.15(k).

(m) At the permitting authority's discretion, the quantity of pollutant allowed to be discharged may be expressed as a concentration limitation instead of the mass based limitation specified in paragraphs (c) through (j) of this section. Concentration limits shall be based on the concentrations specified in this section.

(n) In the event that waste streams from various sources are combined for treatment or discharge, the quantity of each pollutant or pollutant property controlled in paragraphs (a) through (m) of this section attributable to each controlled waste source shall not exceed the specified limitation for that waste source.

(The information collection requirements contained in paragraphs (h)(2), (i)(2), and (j)(2) were approved by the Office of Management and Budget under control number 2040–0040. The information collection requirements contained in paragraph (j)(3) were approved under control number 2040–0033.)

 $[47\ FR\ 52304,\ Nov.\ 19,\ 1982,\ as\ amended\ at\ 48\ FR\ 31404,\ July\ 8,\ 1983]$

§ 423.16 Pretreatment standards for existing sources (PSES).

Except as provided in 40 CFR 403.7 and 403.13, any existing source subject to this subpart which introduces pollutants into a publicly owned treatment works must comply with 40 CFR part 403 and achieve the following pretreatment standards for existing sources (PSES) by July 1, 1984:

(a) There shall be no discharge of polychlorinated biphenol compounds such as those used for transformer fluid.

Environmental Protection Agency

(b) The pollutants discharged in chemical metal cleaning wastes shall not exceed the concentration listed in the following table:

Dellistent or nellistent arenets	PSES pretreatment standards	
Pollutant or pollutant property	Maximum for 1 day (mg/	
Copper, total	1.0	

- (c) [Reserved—Nonchemical Metal Cleaning Wastes].
- (d)(1) The pollutants discharged in cooling tower blowdown shall not exceed the concentration listed in the following table:

Dellutent or pollutent property	PSES pretreatment standards	
Pollutant or pollutant property	Maximum for any time (mg/l)	
The 126 priority pollutants (Appendix A) contained in chemicals added for cooling tower maintenance, except: Chromium, total Zinc, total	(¹) 0.2 1.0	

¹ No detectable amount.

(2) At the permitting authority's discretion, instead of the monitoring in 40 CFR 122.11(b), compliance with the limitations for the 126 priority pollutants in paragraph (d)(1) of this section may be determined by engineering calculations which demonstrate that the regulated pollutants are not detectable in the final discharge by the analytical methods in 40 CFR part 136.

§423.17 Pretreatment standards for new sources (PSNS).

Except as provided in 40 CFR 403.7, any new source subject to this subpart part which introduces pollutants into a publicly owned treatment works must comply with 40 CFR part 403 and the following pretreatment standards for new sources (PSNS).

- (a) There shall be no discharge of polychlorinated biphenyl compounds such as those used for transformer fluid.
- (b) The pollutants discharged in chemical metal cleaning wastes shall not exceed the concentration listed in the following table:

Pollutant or pollutant property	PSNS pretreatment standards
Foliation of poliations property	Maximum for 1 day (mg/
Copper, total	1.0

- (c) [Reserved—Nonchemical Metal Cleaning Wastes].
- (d)(1) The pollutants discharged in cooling tower blowdown shall not exceed the concentration listed in the following table:

Pollutant or pollutant property	PSNS pretreatment standards
Politicality of politicality property	Maximum for any time (mg/l)
The 126 priority pollutants (Appendix A) contained in chemicals added for cooling tower maintenance, except: Chromium, total	0.2 1.0

- (2) At the permitting authority's discretion, instead of the monitoring in 40 CFR 122.11(b), compliance with the limitations for the 126 priority pollutants in paragraph (d)(1) of this section may be determined by engineering calculations which demonstrate that the regulated pollutants are not detectable in the final discharge by the analytical methods in 40 CFR part 136.
- (e) There shall be no discharge of wastewater pollutants from fly ash transport water.

APPENDIX A TO PART 423-126 PRIORITY POLIJITANTS

tetrachloride

- 001 Acenaphthene
- 002 Acrolein
- Acrylonitrile 003
- 004 Benzene
- 005 Benzidine 006 Carbon
 - (tetrachloromethane)
- 007 Chlorobenzene
- 1.2.4-trichlorobenzene 008
- Hexachlorobenzene 009 010 1.2-dichloroethane
- 011 1.1.1-trichloreothane
- 012 Hexachloroethane
- 013 1.1-dichloroethane
- 1,1,2-trichloroethane 014
- 1.1.2.2-tetrachloroethane 015
- Chloroethane 016 Bis(2-chloroethyl) ether 018
- 2-chloroethyl vinyl ether (mixed) 019
- $\hbox{$2$-chloronaphthalene}$ 020
- 021 2.4. 6-trichlorophenol
- Parachlorometa cresol
- Chloroform (trichloromethane)

40 CFR Ch. I (7-1-09 Edition)

024 2-chlorophenol 1.2-dichlorobenzene 026 1.3-dichlorobenzene 027 1.4-dichlorobenzene 028 3.3-dichlorobenzidine 029 1.1-dichloroethylene 030 1.2-trans-dichloroethylene 031 2,4-dichlorophenol 1,2-dichloropropane 032 1,2-dichloropropylene (1.3-033 dichloropropene) 034 2,4-dimethylphenol 035 2,4-dinitrotoluene 036 2.6-dinitrotoluene 037 1,2-diphenylhydrazine 038 Ethylbenzene 039 Fluoranthene 4-chlorophenyl phenyl ether 040 4-bromophenyl phenyl ether 041 Bis(2-chloroisopropyl) ether 042 Bis(2-chloroethoxy) methane Methylene chloride (dichloromethane) 043 044 Methyl chloride (dichloromethane) 045 Methyl bromide (bromomethane) 046 047 Bromoform (tribromomethane) 048 Dichlorobromomethane Chlorodibromomethane 051 052 Hexachlorobutadiene Hexachloromyclopentadiene 053 Isophorone 054 055 Naphthalene Nitrobenzene 056 057 2-nitrophenol 058 4-nitrophenol 059 2.4-dinitrophenol 4,6-dinitro-o-cresol 060 N-nitrosodimethylamine 061 N-nitrosodiphenylamine 062 N-nitrosodi-n-propylamin 063 064 Pentachlorophenol 065 Phenol 066 Bis(2-ethylhexyl) phthalate 067 Butyl benzyl phthalate 068 Di-N-Butyl Phthalate 069 Di-n-octyl phthalate Diethyl Phthalate Dimethyl phthalate 1,2-benzanthracene (benzo(a) anthracene Benzo(a)pyrene (3,4-benzo-pyrene) 074 3,4-Benzofluoranthene (benzo(b) fluoranthene) 075 11,12-benzofluoranthene (benzo(b) fluoranthene) 076 Chrysene Acenaphthylene 077 078 Anthracene 1,12-benzoperylene (benzo(ghi) perylene) 079 080 Fluorene Phenanthrene 081 082 1,2,5,6-dibenzanthracene (dibenzo(,h) anthracene) 083 Indeno (1.2.3-cd)(2.3-0pyrene

pheynylene pyrene) 34 Pyrene

087 Trichloroethylene

Toluene

085

086

Tetrachloroethylene

Pt. 424

```
088 Vinyl chloride (chloroethylene)
089
    Aldrin
    Dieldrin
090
   Chlordane (technical mixture and me-
091
 tabolites)
092 4,4-DDT
093
    4,4-DDE (p,p-DDX)
094
    4,4-DDD (p,p-TDE)
095
    Alpha-endosulfan
096
    Beta-endosulfan
    Endosulfan sulfate
097
    Endrin
099
    Endrin aldehyde
    Heptachlor
    Heptachlor
                      epoxide
                                     (BHC-
101
 hexachlorocyclohexane)
102 Alpha-BHC
   Beta-BHC
104
    Gamma-BHC (lindane)
105 Delta-BHC
                      (PCB-polychlorinated
 biphenyls)
    PCB-1242 (Arochlor 1242)
106
107
    PCB-1254 (Arochlor 1254)
    PCB-1221 (Arochlor 1221)
108
    PCB-1232 (Arochlor 1232)
109
    PCB-1248 (Arochlor 1248)
110
    PCB-1260 (Arochlor 1260)
111
    PCB–1016 (Arochlor 1016)
112
113
    Toxaphene
114
    Antimony
115
    Arsenic
116
    Asbestos
    Beryllium
117
    Cadmium
118
    Chromium
119
    Copper
Cyanide, Total
120
121
122
    Lead
123
    Mercury
124
    Nickel
125
    Selenium
126
    Silver
    Thallium
127
126
    Silver
128
    Zinc
   2,3,7,8-tetrachloro-dibenzo-p-dioxin
129
 (TCDD)
PART 424—FERROALLOY MANU-
```

PART 424—FERROALLOY MANU-FACTURING POINT SOURCE CAT-EGORY

Subpart A—Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory

Sec.

424.10 Applicability; description of the open electric furnaces with wet air pollution control devices subcategory.

424.11 Specialized definitions.

424.12 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available.

Attachment K

Whole Effluent Toxicity (WET) Memo

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Regional Office

4949–A Cox Road Glen Allen, Virginia 23060 (804) 527-5020

TO: Deborah DeBiasi, Whole Effluent Toxicity (WET) Program, OWP&CA

FROM: Drew Hammond, Water Permit Writer, PRO

DATE: March 5, 2012

SUBJECT: VPDES Permit No. VA0073300

James River Cogeneration Company (James River Genco, LLC)

WET Testing Data Review

COPIES: File

Facility Name: James River Cogeneration Company (James River Genco, LLC)

Permit Number: VA0073300

Receiving Stream: Gravelly Run (Outfall 001)

Facility SIC: 4911 (Electric Services)

4961 (Steam and Air-Conditioning Supply) 4931 (Electric and Other Services Combined)

Acute In-Stream
Waste Concentration

(IWC_{acute}): 2.8%

Background

The 2007 Virginia Pollutant Discharge Elimination System (VPDES) permit for James River Cogeneration Company (James River Genco, LLC) is in the process of reissuance. The 2007 permit authorized the discharge of treated industrial wastewaters from Outfall 001 into Gravelly Run in the City of Hopewell, Virginia. The existing VPDES permit expires on October 10, 2012.

This facility was originally included in the Toxics Management Program (TMP) with the 1992 permit reissuance. The 1992 permit required annual acute toxicity testing for Outfall 001 using *Daphia pulex*. The acute endpoint was an LC_{50} equal to 100%. Chronic toxicity testing was not included in the 1992 permit since the chronic in-stream waste concentration (IWC_{chronic}) was less than 1%. When the permit was reissued in 1997 the test species was changed to *Ceriodaphina dubia*; however, the acute endpoint remained the same. In addition, chronic toxicity testing was not included in the 1997 permit. The 1997 annual acute toxicity testing requirements were carried forward with the 2002 permit reissuance with no changes.

Permit Requirements

The expiring 2007 VPDES permit contains Whole Effluent Toxicity (WET) testing for Outfall 001. More specifically, the WET testing special condition requires annual acute toxicity testing for Outfall 001

Permit No. VA0073300 James River Cogeneration Company March 5, 2012 Page 2 of 3

utilizing *Ceriodaphina dubia and Pimephales promelas*. The 2007 special condition set the acute endpoint of NOAEC equal to 100% (TU_a of 1.00).

Data Summary

This data review includes the results of the annual acute toxicity testing for Outfall 001. All WET testing was performed by James R. Reed & Associates (JRRA) and no quality control problems were found.

% Survival in Test Date NOAEC Laboratory 100% Effluent 8/1/2008 100 JRRA 100 7/16/2009 12.5 50 JRRA 8/27/2009 100 100 JRRA 8/4/2010 100 95 JRRA 7/1/2011 100 100 JRRA 11/18/2011 50 75 JRRA 12/15/2011 100 100 JRRA

Table 1. Results of the Acute WET Tests for Ceriodaphina dubia

Table 2. Results of the Acute WET Tests for Pimephales promelas

Test Date	NOAEC	% Survival in 100% Effluent	Laboratory
8/1/2008	100	100	JRRA
7/16/2009	100	100	JRRA
8/4/2010	100	100	JRRA
7/1/2011	100	100	JRRA
11/18/2011	100	100	JRRA

Conclusions & Recommendations

The 2007 permit required the permittee to perform annual acute WET testing for Outfall 001 using *Pimephales promelas*. Since 100% of the acute WET testing results met the special condition endpoint of NOAEC equal to 100%, DEQ staff recommends discontinuing the required acute WET testing with the 2012 permit reissuance. The 2007 permit also required the permittee to perform annual acute WET testing for Outfall 001 using *Ceriodaphina dubia*. Since 71% of the acute WET testing results met the special condition endpoint of NOAEC equal to 100%, DEQ staff recommends continued acute WET testing with the 2012 permit reissuance. However, the 2012 acute endpoint has been revised to an LC_{50} of 20% (which is equivalent to 5.00 acute toxic units) in accordance with current agency guidance (WETLIM10, see attached). Annual acute WET testing using *Ceriodaphina dubia* will allow DEQ staff to further evaluate the effluent's potential toxic effect on aquatic life utilizing the most sensitive species.

The revised WET testing permit section to be included in the 2012 permit reissuance is as follows:

C. Whole Effluent Toxicity (WET) Testing

1. In accordance with the Part I.C.5 schedule below, the permittee shall perform toxicity testing on Outfall 001 using 24-hour flow-proportioned composite samples for the duration of the permit. The acute test to use is:

48 Hour Static Acute Test with Ceriodaphnia dubia

These acute tests shall be performed with a minimum of 5 dilutions, derived geometrically, for calculation of a valid LC_{50} . Express the results as TU_a (Acute Toxic Units) by dividing $100/LC_{50}$ for reporting.

The test dilutions should be able to determine compliance with the following endpoint:

Acute LC₅₀ of 20% equivalent to a TU_a of 5.00

- 2. The permittee may provide additional samples to address data variability. These data shall be reported and may be included in the evaluation of effluent toxicity. Test procedures and reporting shall be in accordance with the WET testing methods cited in 40 CFR 136.3.
- 3. The test data will be evaluated statistically by DEQ for reasonable potential at the conclusion of the permit term. The data may be evaluated sooner if requested by the permittee, or if toxicity has been noted. Should DEQ evaluation of the data indicate that a limit is needed, the permit may be modified or, alternatively revoked and reissued to include a WET limitation and compliance schedule. Following written notification from DEQ of the need for including a WET limitation, the toxicity tests of Part I.C.1 may be discontinued.
- 4. The permit may be modified or revoked and reissued to include pollutant specific limits in lieu of a WET limit should it be demonstrated that toxicity is due to specific parameters. The pollutant specific limits must control the toxicity of the effluent.
- 5. The permittee shall submit one (1) copy of each toxicity test report in accordance with the following schedule:

Test Period	Test Period Dates	Submit Test Report No Later Than		
Year 1	Jan 1 – Dec 31, 20XX	Jan 10, 20XX		
Year 2	Jan 1 – Dec 31, 20XX	Jan 10, 20XX		
Year 3	Jan 1 – Dec 31, 20XX	Jan 10, 20XX		
Year 4	Jan 1 – Dec 31, 20XX	Jan 10, 20XX		
Year 5	Jan 1 – Jun 30, 20XX	Jul 10, 20XX		

		Ü	D	Е	F	G	11			11	L	IVI	N	
	Sprea	dsheet f	or det	ermina	tion of	WET te	st endp	oints or	WET	limits				
	•						-							
	Excel 97			Acute End	lpoint/Permi	t Limit	Use as LC ₅₀ in	n Special Con	dition, as Tl	la on DMR		1		
		ate: 01/10/05		Acute Life	ipointri erini	t Lillint	030 d3 20 ₅₀ ii	ii opeoiai ooii	union, ao 1	ou on Diint				
					F 050404004		1.0		0/ 11	F 00				
	File: WETL			ACUTE	5.252481324	TUa	LC ₅₀ =	20	% Use as	5.00	TUa			
	(MIX.EXE req	uired aiso)		ACUTE WL	Λ a	10 7737705	Note: Inform t	he nermittee th	at if the mea	n of the date	appeads			
				ACCIL WE	-a	10.7737703	this TUa:		a limit may r					
				Chronic En	dpoint/Permit	Limit	Use as NOEC	in Special Co	ndition, as	TUc on DMI	2			
				CHRONIC	52.52481324	TH	NOEC =	2	% Use as	50.00	TUc			
				BOTH*	107.7377076	-	NOEC =		% Use as	100.00	TU _c			
Enter data	in the cells v	vith blue type:		AML	52.52481324		NOEC =		% Use as	50.00	TUc			
								_	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Entry Date:		03/28/12		ACUTE W		107.737705		Note: Inform t						
Facility Nan		JRCC		CHRONIC		35.9125683		of the data ex			21.5847921			
VPDES Nui		VA0073300		* Both means	acute expressed	as chronic		a limit may res	sult using WL	A.EXE				
Outfall Num	iber:	1		% Flow to h	e used from N	NIX FXF		Difuser /mod	elina studv	,				
Plant Flow:		1.83	MGD	70 1 10 W 10 E	c asca monnia	MIX.LXL		Enter Y/N	N	•				
Acute 1Q10):	63.89	MGD	100	%			Acute		:1				
Chronic 7Q	10:	63.89	MGD	100	%			Chronic		:1				
A	-: - - - + -	lata (2)/2 /2//	NIV	N	(Minimum of 4	0 data asiata				O- 4- D	2			
		culate CV? (Y/I		N N			same species, reater/less than			Go to Page Go to Page				
7 II C data av	diable to can	Juliate Mort: (17)	',	.,	(1102012000	, do not doe gi	reater/ress triair	i data)		Co to r age				
IWC _a		2.784540475	9/ Plant	flow/plant flov	v i 1010	NOTE: If the	e IWCa is >33%	specify the						
IWC _c		2.784540475		flow/plant flow			EC = 100% test		use					
		2.701010110	,0 1 Idin			11071		onaponition						
Dilution, acu	ute	35.91256831	100/I	WCa										
Dilution, chi	onic	35.91256831	100/I	WCc										
WLAa					Ua) X's Dilutior									
WLA _c				•	Uc) X's Dilutior									
			HACK X'S W	LA _a - conver	ts acute WLA t	o chronic units	3							
WLA _{a,c}		107.7377043												
	/chronic ratio			C (Default is	10 - if data are	available, use)						
ACR -acute	chronic ratio	10	LC50/NOE		10 - if data are re available, us		e tables Page 3)						
ACR -acute	ent of variation	10 on 0.6 0.4109447	LC50/NOE Default of 0	0.6 - if data a 1.41			e tables Page 3)						
ACR -acute	ent of variation eA eB	10 on 0.6 0.4109447 0.6010373	LC50/NOE Default of Default = 0 Default = 0	0.6 - if data a 0.41 0.60			e tables Page 3)						
ACR -acute	ent of variation eA eB eC	0.4109447 0.6010373 2.4334175	LC50/NOE Default of Default = 0 Default = 2 Default = 2	0.6 - if data a 0.41 0.60 0.43	re available, us	e tables Page	e tables Page 3 2)			the level				
ACR -acute	ent of variation eA eB	0.4109447 0.6010373 2.4334175	LC50/NOE Default of Default = 0 Default = 2 Default = 2	0.6 - if data a 0.41 0.60 0.43		e tables Page	e tables Page 3 2) **The Maximum	Daily Limit is ca			a ACR			
ACR -acute CV-Coeffici Constants	ent of variation eA eB eC	10 0.4109447 0.6010373 2.4334175 2.4334175	LC50/NOE Default of Default = 0 Default = 2 Default = 2	0.6 - if data a 0.41 0.60 0.43 0.43 (1 samp)	re available, us	e tables Page	e tables Page 3 2)	Daily Limit is ca			e ACR.			
ACR -acute CV-Coeffici Constants	ent of variation eA eB eC	0.4109447 0.6010373 2.4334175	LC50/NOE Default of Default = 0 Default = 2 Default = 2 WLAa,c X'	D.6 - if data a 1.41 1.60 1.43 1.43 (1 samp) s eA	re available, us	e tables Page	e tables Page 3 2) **The Maximum	Daily Limit is ca	DL using it are			%		
ACR -acute CV-Coeffici Constants LTA _{a,c} LTA _c	ent of variation eA eB eC eD	10 0.4109447 0.6010373 2.4334175 2.4334175 44.27423883 21.58479309	LC50/NOE Default of Default = 0 Default = 2 Default = 2 WLAa,c X' WLAC X's	D.6 - if data a 1.41 1.60 1.43 1.43 (1 samp) s eA	No. of sample	e tables Page	e tables Page 3, 2) **The Maximum LTA, X's eC. Th	Daily Limit is ca e LTAa,c and Mi	DL using it are	driven by the	OEC's			
ACR -acute CV-Coeffici Constants LTA _{a,c} LTA _c MDL** with	ent of variation eA eB eC eD	100 0.6010373 2.4334175 2.4334175 44.27423883 21.58479309 107.7377076	LC50/NOE Default of Default = 0 Default = 2 Default = 2 WLAa,c X' WLAC X's TUc	0.6 - if data a 0.41 0.60 0.43 0.43 (1 samp) s eA eB	No. of sample	e tables Page	**The Maximum LTA, X's eC. Th	Daily Limit is ca e LTAa,c and Mi c toxicity)	DL using it are	Rounded N	OEC's	% %		
ACR -acute CV-Coeffici Constants LTA _{a,c} LTA _c MDL** with MDL** with	ent of variation eA eB eC eD LTA _{a,c} LTA _c	10 0.4109447 0.6010373 2.4334175 2.4334175 44.27423883 21.58479309	LC50/NOE Default of the Default of the Default of the Default of the Default of Default	D.6 - if data a 1.41 1.60 1.43 1.43 (1 samp) s eA	No. of sample 0.928180 1.903862	e tables Page	**The Maximum LLTA, X's eC. Th	Daily Limit is ca e LTAa,c and Mi c toxicity)	DL using it are	driven by the	OEC's	%		
ACR -acute CV-Coeffici Constants LTA _{a,c} LTA _c MDL** with MDL** with Io	ent of variation eA eB eC eD LTA _{a,c} LTA _c west LTA	10 0.4109447 0.6010373 2.4334175 2.4334175 44.27423883 21.58479309 107.7377076 52.52481324 52.52481324	LC50/NOE Default of Default = C Default = C Default = 2 Default = 2 WLAa,c X' WLAc X's TU _c TU _c TU _c	0.6 - if data a 1.41 1.60 1.43 1.43 (1 samp) s eA BB NOEC = NOEC = NOEC =	No. of sample 0.928180 1.903862 1.903862	e tables Page (Protects fro (Protects fro Lowest LTA X	**The Maximum LLTA, X's eC. Th	Daily Limit is ca e LTAa,c and Mi c toxicity)	DL using it are	Rounded N NOEC = NOEC =	OEC's	%		
ACR -acute CV-Coeffici Constants LTA _{a,c} LTA _c MDL** with MDL** with Io	ent of variation eA eB eC eD LTA _{a,c} LTA _c west LTA	100 n 0.6 0.4109447 0.6010373 2.4334175 2.4334175 44.27423883 21.58479309 107.7377076 52.52481324	LC50/NOE Default of Default = C Default = C Default = 2 Default = 2 WLAa,c X' WLAc X's TU _c TU _c TU _c	0.6 - if data a 1.41 1.60 1.43 1.43 (1 samp) s eA BB NOEC = NOEC = NOEC =	No. of sample 0.928180 1.903862 1.903862	e tables Page (Protects fro (Protects fro Lowest LTA X	**The Maximum LLTA, X's eC. Th	Daily Limit is ca e LTAa,c and Mi c toxicity)	DL using it are	Rounded N NOEC = NOEC = NOEC =	OEC's 1 2 2	%		
ACR -acute CV-Coeffici Constants LTA _{a,c} LTA _c MDL** with MDL** with Io	ent of variation eA eB eC eD LTA _{a,c} LTA _c west LTA	10 0.4109447 0.6010373 2.4334175 2.4334175 44.27423883 21.58479309 107.7377076 52.52481324 52.52481324	LC50/NOED Default = 0 Default = 0 Default = 2 Default = 2 WLAa,c X' WLAC X'S TU _c TU _c NEEDED, 0	0.6 - if data a 1.41 1.60 1.43 1.43 (1 samp) s eA BB NOEC = NOEC = NOEC =	No. of sample 0.928180 1.903862 1.903862	(Protects fro (Protects fro (Protects fro Lowest LTA X	**The Maximum LLTA, X's eC. Th	Daily Limit is ca e LTAa,c and Mi c toxicity)	DL using it are	Rounded N NOEC = NOEC =	OEC's 1 2 2	% 2 % 2 %		
ACR -acuted CV-Coefficial Constants LTA _{a,c} LTA _c MDL** with MDL** with AML with lo	ent of variation eA eB eC eC eD LTA _{a,c} LTA _c west LTA	10 0.4109447 0.6010373 2.4334175 2.4334175 44.27423883 21.58479309 107.7377076 52.52481324 52.52481324	LC50/NOE Default of the Default = 0 Default = 0 Default = 2 Default = 2 WLAa_c X's WLAc_X's TU_c TU_c TU_c TU_c TU_c TU_a	0.6 - if data a 1.41 1.60 1.43 1.43 (1 samp) 1.43 (1 samp) 1.43 (NOEC = NOEC = NOEC = NOEC =	No. of sample 0.928180 1.903862 1.903862 DL FROM TU _c	(Protects fro (Protects fro (Protects fro Lowest LTA X	**The Maximum LLTA, X's eC. Th	Daily Limit is ca e LTAa,c and Mi c toxicity)	DL using it are	Rounded N NOEC = NOEC = NOEC =	OEC's 1 2 2 2 C50's	% 2 % 2 %		

Α	В	С	D	Е	F	G	Н		J	K	L	M	N	0
	D 1	Follow the c	 !u==4!=u=	4		iti- OV	/ ff :-:							
	rage 2	· Follow the c	irections	to deve	lop a site s	pecific Cv	(coemcien	i oi variati	OH)					
	IE VOLLU	VE AT LEAST 40	DATA BOILE	FO TI 14 T		Montalones								
		VE AT LEAST 10		IS THAT		Vertebrate			Invertebrate					
		NTIFIABLE (NOT				IC ₂₅ Data			IC ₂₅ Data					
		ECIES, ENTER TI				or			or					
		'G" (VERTEBRAT				LC ₅₀ Data	LN of data		LC ₅₀ Data	LN of data				
		RTEBRATE). THE		E		******			******					
		P FOR THE CALO			1			1						
}		THE DEFAULT VA			2			2						
)		C WILL CHANGE		IS	3									
)	ANYTHING	OTHER THAN O).6.		4			4						
					5			5						
					6			6						
	Coofficiant	of Variation for of	fluont toot-		7			7						
	Coefficient	of Variation for ef	nuent (ests		8			3						
3	CV =	0.6	(Default 0.6)		10			10						
	CV =	0.0	(Delault 0.6)		11			11						
	ð ² =	0.0074047												
)		0.3074847			12			12						
	ð =	0.554513029			13			13 14						
)	I laina tha l	og variance to de	valan a A		15			15						
	Using the i	(P. 100, step 2			16			16						
3	7 _ 1 001	(97% probability s			17			17						
1	A =	-0.88929666			18			18						
5	eA =	0.410944686			19			19						
3	671-	0.410044000			20			20						
7	Using the I	og variance to de	velop eB		20			20						
3		(P. 100, step 2			St Dev	NEED DATA	NEED DATA	St Dev	NEED DATA	NEED DATA				
9	ð₄² =	0.086177696			Mean	0		Mean	0					
)	Õ ₄ =	0.293560379			Variance	0	0.000000		0					
	B =	-0.50909823			CV	0		CV	0					
2	eB =	0.601037335			CV	U		CV	U					
3	eb =	0.001037333												
1	Licina the i	og variance to de	volon oC											
	Osing the i	(P. 100, step 4												
3		(i . 100, stop +	a or rob)											
7	$\tilde{o}^2 =$	0.3074847												
3	ð =	0.554513029												
)	0 = C =	0.889296658												
0	eC =	2.433417525												
1	50 -	2.400417020												
2	Using the I	og variance to de	velop eD											
3	209 110 1	(P. 100, step 4												
4	n =	1		will most I	ikely stay as "1"	for 1 sample/	month.							
5	ð _n ² =	0.3074847			, ,,,	,								
6														
	ð _n =	0.554513029												
7	D = eD =	0.889296658												
9	eD =	2.433417525												

	А	В	С	D	Е	F	G	Н		J	K	L	M	N	0
110															
111		Page 3 - F	follow direc	tions to	develop a	a site speci	fic ACR (A	cute to Ch	ronic Ratio)					
112	To dotormin	A outo/Chron	nic Ratio (ACR),	innort work	la data balau	. I looble data	io defined on	valid paired too	t rooulto						
			at the same tem												
			es the LC_{50} by the					s less than the	acute						
116	- 50,														
117			Table 1. ACR	using Verte	ebrate data						Convert L	C ₅₀ 's and I	NOEC's to C	hronic TU's	
118												for use in W			
119										Table 3.		ACR used:	10		
120	Set #	LC ₅₀	NOEC	Test ACR	Logarithm	Geomean	Antilog	ACR to Use							
121	1	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA			Enter LC ₅₀	TUc	Enter NOEC	<u>TUc</u>	
122 123 124	2	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		1		NO DATA	100	1.000000	
123	3	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		2		NO DATA	12.5	8.000000	
	4	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		3		NO DATA	100	1.000000	
125	5	#N/A #N/A	#N/A	#N/A	#N/A	#N/A	#N/A #N/A	NO DATA		4		NO DATA	100	1.000000	
126	6 7	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	NO DATA NO DATA		5 6		NO DATA	100 50	1.000000 2.000000	
127 128 129	8	#N/A #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		7		NO DATA	100	1.000000	
129	9	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		8		NO DATA		NO DATA	
130	10	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		9		NO DATA		NO DATA	
131										10		NO DATA		NO DATA	
132					ACR for vert	ebrate data:		0		11		NO DATA		NO DATA	
133										12		NO DATA		NO DATA	
134			Table 1. Result		Vertebrate A			0		13		NO DATA		NO DATA	
135			Table 2. Result		Invertebrate			0		14		NO DATA		NO DATA	
136 137					Lowest ACR			Default to 10		15 16		NO DATA		NO DATA NO DATA	
138			Table 2. ACR	usina Invo	tahrata data				1	17		NO DATA		NO DATA	
139			Table 2. ACI	using inve	tebrate date	•				18		NO DATA		NO DATA	
140										19		NO DATA		NO DATA	
141	Set #	LC ₅₀	NOEC	Test ACR	Logarithm	Geomean	Antilog	ACR to Use		20		NO DATA		NO DATA	
142	1	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA							
143	2	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA					limit is needed		
144	3	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		convert the	TUc answer	you get to TL	la and then an	LC50,	
145	4	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		enter it here		NO DATA	%LC ₅₀		
146	5	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA				NO DATA	TUa		
147	6	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA							
148	7	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA							
149	8	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA							
150	9	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA							
151 152	10	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA							
153					ACR for vert	ebrate data:		0							
154						data.]						
155															
156															
157		-		DILUTIO	N SERIE	S TO RECO	MMEND								
158		Table 4.				Monitoring		Limit							
159							TUc	% Effluent	TUc						
160		Dilution ser	ies based on o	data mear	\ \	4.6	21.58479	,5 Emacrit							
161			ies to use for I			1.0	_1.00+13	2	50						
162			tor to recomm			0.2152415		0.1414214	30						
163			10 . 500111111			5.2.52110		3							
164		Dilution ser	ies to recomm	end:		100.0	1.00	100.0	1.00						
165						21.5	4.65	14.1	7.07						
166						4.6	21.58	2.0	50.00						
167						1.0	100.28	0.3	353.55						
168						0.21	465.90	0.0	2500.00						
169			Extra dilutions	s if neede	<u> </u>	0.05	2164.56	0.0	17677.67						
170			a anation		-	0.01	10056.42	0.0	125000.00						
171															
172															

3/28/2012 11: 10: 09 AM

Facility = James River Cogeneration Company Chemical = C. dubia - acute Chronic averaging period = 4 WLAa = 11 WLAc = NA Q. L. = 1 # samples/mo. = 1 # samples/wk. = 1

Summary of Statistics:

observations = 7
Expected Value = 2.14285
Variance = 1.65306
C.V. = 0.6
97th percentile daily values = 5.21446
97th percentile 4 day average = 3.56526
97th percentile 30 day average = 2.58439
< Q.L. = 0
Model used = BPJ Assumptions, type 2 data</pre>

No Limit is required for this material

The data are:

- 1.0
- 8.0
- 1.0
- 1.0
- 1.0
- 2. 0 1. 0

3/28/2012 11:11:00 AM

Facility = James River Cogeneration Company Chemical = P. promelas - acute Chronic averaging period = 4 WLAa = 11 WLAc = NA Q. L. = 1 # samples/mo. = 1 # samples/wk. = 1

Summary of Statistics:

No Limit is required for this material

The data are:

- 1.0
- 1. 0
- 1.0
- 1.0
- 1.0

Hammond, Andrew (DEQ)

From: DeBiasi, Deborah (DEQ)

Sent: Wednesday, March 07, 2012 2:21 PM

To: Hammond, Andrew (DEQ)

Subject: RE: VA0073300 - James River Cogeneration Company - WET Memo

Good job, Drew – if their flow increases significantly, we may consider chronic monitoring down the road. They already meet the applicability criterion of being over 1% of the 7Q10, but I don't think it's necessary at this time.

Deborah L. DeBiasi, Virginia DEQ

Office of Water Permit and Compliance Assistance Programs

Email: Deborah.DeBiasi@deq.virginia.gov

PH: 804-698-4028

From: Hammond, Andrew (DEQ)

Sent: Wednesday, March 07, 2012 2:18 PM

To: DeBiasi, Deborah (DEQ)

Subject: RE: VA0073300 - James River Cogeneration Company - WET Memo

Hi Deborah.

The proposed draft permit language has been revised as suggested, see attached.

Thanks, Drew

Andrew J. Hammond II, P.E. Water Permit Writer Dept. of Environmental Quality

Piedmont Regional Office 4949-A Cox Road

Glen Allen, VA 23060 Ph: 804.527.5048 Fx: 804.527.5106

Andrew.Hammond@deq.virginia.gov

This email should not be considered a legal opinion or case decision as defined by the Administrative Process Act, Code of Virginia § 2.2-4000 et seq.

From: DeBiasi, Deborah (DEQ)

Sent: Wednesday, March 07, 2012 10:27 AM

To: Hammond, Andrew (DEQ)

Subject: RE: VA0073300 - James River Cogeneration Company - WET Memo

The only comment would be to insert the word "statistically" or use "by STATS.exe" here, so that the permittee knows how the data will be looked at.

The test data will be evaluated statistically by DEQ for reasonable potential at the conclusion of the permit term.

Deborah L. DeBiasi, Virginia DEQ

Office of Water Permit and Compliance Assistance Programs

Email: Deborah.DeBiasi@deq.virginia.gov

PH: 804-698-4028

Attachment L

Outfall 101 Limitation Evaluations

4/18/2012 11: 15: 38 AM

```
Facility = James River Genco, LLC
Chemical = Dissolved Chromium III (Outfall 101)
Chronic averaging period = 4
WLAa = 16000 ug/L
WLAc
                   = 2000 \quad ug/L
                   = 0.1
                               ug/L
Q. L.
\# samples/mo. = 1
\# samples/wk. = 1
```

Summary of Statistics:

```
# observations = 1
Expected Value = 200
               = 14400
Vari ance
C. V.
               = 0.6
97th percentile daily values = 486.683 \text{ ug/L}
97th percentile 4 day average =
                                  332. 758 ug/L
97th percentile 30 day average= 241.210 ug/L
# < Q. L.
               = 0
Model used
               = BPJ Assumptions, type 2 data
```

No Limit is required for this material

The data are:

200 ug/L

The total recoverable chromium limitation (200 ug/L or 0.2 mg/L) was entered into STATS along with the dissolved Chromium III wasteload allocations from MSTRANTI. No additional permit limitations are needed. A human health water quality standard does not exist for this effluent parameter.

4/18/2012 11: 18: 29 AM

```
Facility = James River Genco, LLC
Chemical = Dissolved Chromium VI (Outfall 101)
Chronic averaging period = 4
WLAa = 570 ug/L
                    = 400 \text{ ug/L}
WLAc
Q. L.
                    = 0.1 \text{ ug/L}
\# samples/mo. = 1
\# samples/wk. = 1
Summary of Statistics:
```

```
# observations = 1
Expected Value = 200
               = 14400
Vari ance
C. V.
               = 0.6
97th percentile daily values = 486.683 \text{ ug/L}
97th percentile 4 day average =
                                  332. 758 ug/L
97th percentile 30 day average= 241.210 ug/L
# < Q. L.
               = 0
Model used
               = BPJ Assumptions, type 2 data
```

No Limit is required for this material

The data are:

200 ug/L

The total recoverable chromium limitation (200 ug/L or 0.2 mg/L) was entered into STATS along with the dissolved Chromium VI wasteload allocations from MSTRANTI. No additional permit limitations are needed. A human health water quality standard does not exist for this effluent parameter.

4/18/2012 11: 19: 07 AM

```
Facility = James River Genco, LLC Chemical = Dissolved Zinc (Outfall 101) Chronic averaging period = 4 WLAa = 3200 ug/L WLAc = 3200 ug/L Q. L. = 0.1 ug/L # samples/mo. = 4 # samples/wk. = 1
```

Summary of Statistics:

No Limit is required for this material

The data are:

1000 ug/L

The total recoverable zinc limitation (1000 ug/L or 1.0 mg/L) was entered into STATS along with the dissolved zinc wasteload allocations from MSTRANTI. No additional permit limitations are needed. The zinc effluent limitation is well below the human health wasteload allocation of 930,000 ug/L.

Attachment M

NPDES Permit Rating Work Sheet

NPDES PERMIT RATING WORK SHEET

NPDES No. VA00	073300							☐ Regular / ☐ Discretio ☐ Score ch ☐ Deletion	nary Ad	dition	s change	
Facility Name: J	James River	Genco,	LLC									
County: City of	<u>Hopewell</u>											
Receiving Water	: Gravelly I	Run_										
Reach Number:												
Is this facility a stithe following chainst the following chainst the following chainst the following the followi	racteristics? 500 MW or g er plant discharge gr	reater (no	t using a c	cooling page		p	s this permit for a m opulation greater th I YES; score is 700 (I NO (continue)	an 100,000		torm sewe	er serving	а
FACTOR 1: T PCS SIC Code: Industrial Subcat					ary SIC Code: 49 ubcategory)	<u>911</u>	Other SI	C Codes: 4	<u>961, 49</u>	<u>31</u>		
Determine the T	oxicity pote	ntial from	Appendix	A. Be	sure to use the	TOTA	L toxicity potential	column and	check d	one)		
Toxicity Group	Code	Points		7	Toxicity Group	Code	Points	Т	oxicity (Group	Code	Points
☐ No process waste streams	0	0		[□ 3.	3	15	[□ 7.		7	35
□ 1.	1	5			□ 4.	4	20	Г	□ 8.		8	40
□2.	2	10		[□ 5.	5	25		□ 9.		9	45
					⊠ 6.	6	30		□ 10.		10	50
									Code I	Number C	hecked:	<u>6</u>
									Total I	Points Fa	ctor 1: 3	<u>0</u>
FACTOR 2: F	low/Strea	am Flow	/ Volum	e (Con	mplete either Sect	ion A	or Section B; check o	only one)				
Section A ? Was	stewater Flo	w Only C	onsidered	t t			Section B ? Waste	water and S	Stream	Flow Con	sidered	
Wastewater Type (See Instructions			Code	Points	S		Wastewater Type (See Instructions)					centration
Type I: Flow < Flow 5 to	5 MGD		11 12	0 10			(See Instructions)	at Necelvii	ng Sue	alli LOW I I	Code	Points
	to 50 MGD		13 14	20 30			Type I/III:	< 10 %			41	0
Type II: Flow <			21	10			турс или.	10 % to <	50 %		42	10
Flow 1 to 9	5 MGD		22 23	20 30				> 50 %	JU 70		43	20
Flow > 10			24	50				2 00 70			40	20
Type III: Flow < Flow 1 to 9			31 32	0 10			Type II:	< 10 %			51	0
	o 10 MGD		33 34	20 30				10 % to <5	0 %		52	20
1 10W > 10	MOD		0 -7	00				> 50 %			53	30
							(Code Check	ed from	Section A	A or B: 3	<u>2</u>

Total Points Factor 2: 10

Total Points Factor 4: 10

FACTOR 3: Conventional Pollutants (only when limited by the permit) A. Oxygen Demanding Pollutant: (check one) ☐ BOD ☐ COD ☐ Other: **Points** Code Permit Limits: (check one) < 100 lbs/day 0 1 100 to 1000 lbs/day 2 5 > 1000 to 3000 lbs/day 3 15 > 3000 lbs/day 4 20 Code Checked: N/A Points Scored: 0 B. Total Suspended Solids (TSS) **Points** Code Permit Limits: (check one) < 100 lbs/day 0 1 100 to 1000 lbs/day 2 5 > 1000 to 5000 lbs/day 3 15 > 5000 lbs/day 4 20 Code Checked: 2 Points Scored: 5 C. Nitrogen Pollutant: (check one) ☐ Ammonia Other: Nitrogen Equivalent Code **Points** 0 Permit Limits: (check one) < 300 lbs/day 300 to 1000 lbs/day 2 5 > 1000 to 3000 lbs/day 15 3 > 3000 lbs/day 20 Code Checked: N/A Points Scored: 0 Total Points Factor 3: 5 **FACTOR 4: Public Health Impact** Is there a public drinking water supply located within 50 miles downstream of the effluent discharge (this includes any body of water to which the receiving water is a tributary)? A public drinking water supply may include infiltration galleries, or other methods of conveyance that ultimately get water from the above referenced supply. ☑ YES (If yes, check toxicity potential number below) ☐ NO (If no, go to Factor 5) Determine the human health toxicity potential from Appendix A. Use the same SIC code and subcategory reference as in Factor 1. (Be sure to use the <u>human health</u> toxicity group column? check one below) **Toxicity Group** Code **Points Toxicity Group** Code **Points** Toxicity Group Code **Points** ☐ No process waste streams 0 □ 3. 3 □ 7. 7 15 □ 1. 0 **□**4. 4 0 □ 8. 8 20 1 □2. 2 0 □ 5. 5 5 □9. 9 25 X 6. 6 10 □ 10. 10 30 Code Number Checked: 6

FACTOR 5: Water Quality Factors

A.	Is (or will) one or more of the effluent discharge limits based on water quality factors of the receiving stream (rather than technology-based
	federal effluent guidelines, or technology-based state effluent guidelines), or has a wasteload allocation been assigned to the discharge:

	Yes	Code 1	Points 10
⊠	No	2	0

B. Is the receiving water in compliance with applicable water quality standards for pollutants that are water quality limited in the permit?

⊠	Yes	Code 1	Points 0
	No	2	5

C. Does the effluent discharged from this facility exhibit the reasonable potential to violate water quality standards due to whole effluent toxicity?

	Yes	Code 1	Points 10
\boxtimes	No	2	0

Code Number Checked: A: 2 B: 1 C: 2

Points Factor 5: A: $\underline{0} + B$: $\underline{0} + C$: $\underline{0} = \underline{0}$ Total

FACTOR 6: Proximity to Near Coastal Waters

A. Base Score: Enter flow code here (from Factor 2): 32

Enter the multiplication factor that corresponds to the flow code: <u>0.05</u>

Check appropriate facility HPRI Code (from PCS):

	HPRI#	Code	HPRI Score	Flow Code	Multiplication Factor
	1	1	20	11, 31, or 41	0.00
	2	2	0	12, 32, or 42	0.05
\bowtie	3	3	30	13, 33, or 43	0.10
	4	4	0	14 or 34	0.15
	5	5	20	21 or 51	0.10
				22 or 52	0.30
				23 or 53	0.60
HPR	I code chec	ked: <u>3</u>		24	1.00

Base Score: (HPRI Score) $30 \times (Multiplication Factor) 0.05 = 1.5 \times (TOTAL POINTS A)$

B. Additional Points \(\subseteq NEP Program \)
For a facility that has an HPRI code of 3, does the facility discharge to one of the estuaries enrolled in the National Estuary Protection (NEP) program (see instructions) or the Chesapeake Bay?

	Code	Points
⊠ Yes □ No	1 2	10 0
	_	O

C. Additional Points Great Lakes Area of Concern For a facility that has an HPRI code of 5, does the facility discharge any of the pollutants of concern into one of the Great Lakes' 31 areas of concern (see Instructions)

		Code	Points
	Yes	1	10
\times	No	2	0

Code Number Checked: A: 3 B: 1 C: 2

Points Factor 6: A: 1.5 + B: 10 + C: 0 = 11.5 **Total**

SCORE SUMMARY

Factor	Description	Total Points	
1	Toxic Pollutant Potential	<u>30</u>	
2	Flows/Streamflow Volume	<u>10</u>	
3	Conventional Pollutants	<u>5</u>	
4	Public Health Impacts	<u>10</u>	
5	Water Quality Factors	<u>0</u>	
6	Proximity to Near Coastal Waters	<u>11.5</u>	
	TOTAL (Factors 1 through 6)	<u>66.5</u>	
S1. Is the total	score equal to or greater than 80?	es (Facility is a major) 🛮 🖾 No	
S2. If the answ	ver to the above questions is no, would you	u like this facility to be discretionary major?	
⊠ No			
☐ Yes (Add	1 500 points to the above score and provide	e reason below):	
Reason:			
NEW SC	ORE: <u>66.5</u>		
OLD SC	ORE: <u>60</u>		

Permit Reviewer's Name: Andrew Hammond
Permit Reviewer's Number: (804) 527-5048

Date: <u>4/9/2012</u>

Attachment N

Quantification Level Development

Derivation of Quantification Levels (QLs) for Total Recoverable Chromium & Total Recoverable Zinc

Total Recoverable Chromium

Assumptions:

Log-normal distribution Coefficient of Variation (CV) = 0.60 97th Percentile Occurrence Probability (z score = 1.88079)

Where:

Daily Maximum Limitation (DML) = 0.2 mg/L

Average Monthly Limitation (AML) = 0.2 mg/L

Number of Samples per Month (n) = 1 (assumed for monitoring frequencies encompassing multiple months)

= unknown = 0.2 mg/L

Long Term Average (LTA) = unknown

Long Term Average (LTA) to ensure compliance with DML:

$$\sigma^2 = \ln(CV^2 + 1) = \ln(0.60^2 + 1) = 0.30748$$

$$\sigma = \sqrt{\sigma^2} = \sqrt{0.30748} = 0.55451$$

$$LTA = \frac{DML}{e^{[z\sigma - 0.5\sigma^2]}} = \frac{0.2 \ mg/L}{e^{[(1.88079 \times 0.55451) - (0.5 \times 0.30748)]}} = 0.082 \ mg/L$$

Long Term Average (LTA) to ensure compliance with AML:

$$\sigma^2 = \ln\left(\frac{CV^2}{n} + 1\right) = \ln\left(\frac{0.60^2}{1} + 1\right) = 0.30748$$

$$\sigma = \sqrt{\sigma^2} = \sqrt{0.30748} = 0.55451$$

$$LTA = \frac{DML}{e^{[z\sigma - 0.5\sigma^2]}} = \frac{0.2 \ mg/L}{e^{[(1.88079 \times 0.55451) - (0.5 \times 0.30748)]}} = 0.082 \ mg/L$$

Therefore, the QL for Total Recoverable Chromium should be set equal to 0.082 mg/L.

Total Recoverable Zinc

Assumptions:

Log-normal distribution Coefficient of Variation (CV) = 0.60 97th Percentile Occurrence Probability (z score = 1.88079)

Where:

Daily Maximum Limitation (DML) = 1.0 mg/L
Average Monthly Limitation (AML) = 1.0 mg/L
Number of Samples per Month (n) = 4
Long Term Average (LTA) = unknown

Long Term Average (LTA) to ensure compliance with DML:

$$\sigma^2 = \ln(CV^2 + 1) = \ln(0.60^2 + 1) = 0.30748$$

$$\sigma = \sqrt{\sigma^2} = \sqrt{0.30748} = 0.55451$$

$$LTA = \frac{DML}{e^{[z\sigma - 0.5\sigma^2]}} = \frac{1.0 \ mg/L}{e^{[(1.88079 \times 0.55451) - (0.5 \times 0.30748)]}} = 0.41 \ mg/L$$

Long Term Average (LTA) to ensure compliance with AML:

$$\sigma^2 = \ln\left(\frac{CV^2}{n} + 1\right) = \ln\left(\frac{0.60^2}{4} + 1\right) = 0.08618$$

$$\sigma = \sqrt{\sigma^2} = \sqrt{0.08618} = 0.29356$$

$$LTA = \frac{DML}{e^{[z\sigma - 0.5\sigma^2]}} = \frac{1.0 \ mg/L}{e^{[(1.88079 \times 0.29356) - (0.5 \times 0.08618)]}} = 0.60 \ mg/L$$

Therefore, the QL for Total Recoverable Zinc should be set equal to 0.41 mg/L.